Advances in Atmospheric Sciences

, Volume 34, Issue 11, pp 1333–1345 | Cite as

Improvement of a snow albedo parameterization in the Snow–Atmosphere–Soil Transfer model: evaluation of impacts of aerosol on seasonal snow cover

  • Efang Zhong
  • Qian Li
  • Shufen Sun
  • Wen Chen
  • Shangfeng Chen
  • Debashis Nath
Original Paper


The presence of light-absorbing aerosols (LAA) in snow profoundly influence the surface energy balance and water budget. However, most snow-process schemes in land-surface and climate models currently do not take this into consideration. To better represent the snow process and to evaluate the impacts of LAA on snow, this study presents an improved snow albedo parameterization in the Snow–Atmosphere–Soil Transfer (SAST) model, which includes the impacts of LAA on snow. Specifically, the Snow, Ice and Aerosol Radiation (SNICAR) model is incorporated into the SAST model with an LAA mass stratigraphy scheme. The new coupled model is validated against in-situ measurements at the Swamp Angel Study Plot (SASP), Colorado, USA. Results show that the snow albedo and snow depth are better reproduced than those in the original SAST, particularly during the period of snow ablation. Furthermore, the impacts of LAA on snow are estimated in the coupled model through case comparisons of the snowpack, with or without LAA. The LAA particles directly absorb extra solar radiation, which accelerates the growth rate of the snow grain size. Meanwhile, these larger snow particles favor more radiative absorption. The average total radiative forcing of the LAA at the SASP is 47.5 W m−2. This extra radiative absorption enhances the snowmelt rate. As a result, the peak runoff time and “snow all gone” day have shifted 18 and 19.5 days earlier, respectively, which could further impose substantial impacts on the hydrologic cycle and atmospheric processes.

Key words

light-absorbing aerosols snow albedo SAST SNICAR 

摘 要

积雪中的吸光性气溶胶可以对地表能量平衡和水平衡产生显著的影响. 然而, 在当前考虑了积雪过程方案的陆面和气候模式中, 大多数方案却忽视了气溶胶带来的这些影响. 为了更好地再现积雪过程并评估吸光性气溶胶对积雪的影响, 本文采用了雪-冰-气溶胶辐射模型(SNICAR)来改进雪-大气-土壤传输模型(SAST)中的积雪反照率参数化方案, 并使用美国科罗拉多 SASP 站点观测资料验证了该耦合模式. 结果表明, 相比原始模式, 新耦合的模式可以更好地再现积雪反照率和雪深的变化, 特别是在融雪期间. 此外, 为了进一步评估气溶胶对积雪的影响, 本文利用新耦合模式分别模拟了干净的雪和含吸光性气溶胶的积雪的季节变化特征. 模拟结果显示, 吸光性气溶胶可以吸收额外的太阳辐射, 使得积雪粒子粒径增长, 而同时, 粒径的增长有利于积雪粒子吸收更多的辐射能量. 在 SASP站, 吸光性气溶胶的平均辐射强迫为47.5 W m−2. 该额外辐射吸收量提高了积雪融化率, 使得径流峰值时间和积雪完全融化的时间分别提前了平均 18 和 19.5 天, 而这将对后续的水文和大气过程产生重要影响.


吸光性气溶胶 积雪反照率 SAST SNICAR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the Center for Snow and Avalanche Studies and Mr. Jeff DERRY for the data availability. We also thank the two anonymous reviewers for their helpful comments, which improved the paper. This work was supported jointly by projects from the National Natural Science Foundation of China (Grant No. 41275003) and the National Key Basic Research and Development Projects of China (Grant No. 2014CB953903).


  1. Anderson, E. A., 1976: A point energy and mass balance model of a snow cover. NOAA Tech. Rep. NWS 19, Office of Hydrology, National Weather Service, Silver Spring.Google Scholar
  2. Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snowdominated regions. Nature, 438, 303–309, doi: 10.1038/nature04141.CrossRefGoogle Scholar
  3. Barnett, T. P., L. Dümenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46, 661–686, doi: 10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2.CrossRefGoogle Scholar
  4. Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. John Wiley & Sons, 530 pp.Google Scholar
  5. Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res., 118, 5380–5552, doi: 10.1002/jgrd.50171.Google Scholar
  6. Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 3445–3482, doi: 10.1175/JCLI3819.1.CrossRefGoogle Scholar
  7. Bryant, A. C., T. H. Painter, J. S. Deems, and S. M. Bender, 2013: Impact of dust radiative forcing in snow on accuracy of operational runoff prediction in the Upper Colorado River Basin. Geophys. Res. Lett., 40, 3945–3949, doi: 10.1002/grl.50773.CrossRefGoogle Scholar
  8. Conway, H., A. Gades, and C. F. Raymond, 1996: Albedo of dirty snow during conditions of melt. Water Resour. Res., 32, 1713–1718, doi: 10.1029/96WR00712.CrossRefGoogle Scholar
  9. Di Mauro, B., F. Fava, L. Ferrero, R. Garzonio, G. Baccolo, B. Delmonte, and R. Colombo, 2015: Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations. J. Geophys. Res., 120, 6080–6097, doi: 10.1002/2015JD023287.Google Scholar
  10. Essery, R., S. Morin, Y. Lejeune, and C. B Ménard, 2013: A comparison of 1701 snow models using observations from an alpine site. Advances in Water Resources, 55, 131–148, doi: 10.1016/j.advwatres.2012.07.013.CrossRefGoogle Scholar
  11. Flanner, M. G., and C. S. Zender, 2005: Snowpack radiative heating: Influence on Tibetan Plateau climate. Geophys. Res. Lett., 32, L06501, doi: 10.1029/2004GL022076.CrossRefGoogle Scholar
  12. Flanner, M. G., and C. S. Zender, 2006: Linking snowpack microphysics and albedo evolution. J. Geophys. Res., 111, D12208, doi: 10.1029/2005JD006834.CrossRefGoogle Scholar
  13. Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch, 2007: Present-day climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, doi: 10.1029/2006JD008003.CrossRefGoogle Scholar
  14. Flanner, M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J. Rasch, 2009: Springtime warming and reduced snow cover from carbonaceous particles. Atmospheric Chemistry and Physics, 9, 2481–2497, doi: 10.5194/acp-9-2481-2009.CrossRefGoogle Scholar
  15. Franz, K. J., T. S. Hogue, and S. Sorooshian, 2008: Snow model verification using ensemble prediction and operational benchmarks. Journal of Hydrometeorology, 9, 1402–1415, doi: 10.1175/2008JHM995.1.CrossRefGoogle Scholar
  16. Gray, D. M., and P. G. Landine, 1987: Albedo model for shallow prairie snow covers. Canadian Journal of Earth Sciences, 24, 1760–1768, doi: 10.1139/e87-168.CrossRefGoogle Scholar
  17. Groisman, P. Y., T. R. Karl, and R. W. Knight, 1994: Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science, 263, 198–200, doi: 10.1126/science.263.5144.198.CrossRefGoogle Scholar
  18. Hadley, O. L., and T. W. Kirchstetter, 2012: Black-carbon reduction of snow albedo. Nat. Clim. Change, 2, 437–440, doi: 10.1038/nclimate1433.CrossRefGoogle Scholar
  19. Hansen, J., and L. Nazarenko, 2004: Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci. U. S. A., 101, 423–428, doi: 10.1073/pnas.2237157100.CrossRefGoogle Scholar
  20. Henderson-Sellers, A., Z. L. Yang, and R. E. Dickinson, 1993: The project for intercomparison of land-surface parameterization schemes. Bull. Amer. Meteor. Soc., 74, 1335–1349, doi: 10.1175/1520-0477(1993)074<1335:TPFIOL>2.0.CO;2.CrossRefGoogle Scholar
  21. Jordan, R., 1991: A one-dimensional temperature model for a snow cover. Tech. Documentation for SNTHERM, 89, Special Rep. 91–16, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH.Google Scholar
  22. Klok, E. J., and J. Oerlemans, 2004: Modelled climate sensitivity of the mass balance of Morteratschgletscher and its dependence on albedo parameterization. Int. J. Climatol., 24, 231–245, doi: 10.1002/joc.994.CrossRefGoogle Scholar
  23. Landry, C. C., K. A. Buck, M. S. Raleigh, and M. P. Clark, 2014: Mountain system monitoring at Senator Beck Basin, San Juan Mountains, Colorado: A new integrative data source to develop and evaluate models of snow and hydrologic processes. Water Resour. Res., 50, 1773–1788, doi: 10.1002/2013WR013711.CrossRefGoogle Scholar
  24. Loth, B., H. F. Graf, and J. M. Oberhuber, 1993: Snow cover model for global climate simulations. J. Geophys. Res., 98, 10451–10464, doi: 10.1029/93JD00324.CrossRefGoogle Scholar
  25. McConnell, J. R., and Coauthors, 2007: 20th-century industrial black carbon emissions altered arctic climate forcing. Science, 317, 1381–1384, doi: 10.1126/science.1144856.CrossRefGoogle Scholar
  26. Nijssen, B., and Coauthors, 2003: Simulation of high latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e): 2: Comparison of model results with observations. Global and Planetary Change, 38, 31–53, doi: 10.1016/S0921-8181(03)00004-3.CrossRefGoogle Scholar
  27. Oaida, C. M., Y. K. Xue, M. G. Flanner, S. M. Skiles, F. De Sales, and T. H. Painter, 2015: Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S. J. Geophys. Res., 120, 3228–3248, doi: 10.1002/2014JD022444.Google Scholar
  28. Oleson, K.W., and Coauthors, 2010: Technical Description of Version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, National Center for Atmospheric Research, Boulder, CO, doi: 10.5065/D6FB50WZ.Google Scholar
  29. Painter, T. H., A. P. Barrett, C. C. Landry, J. C. Neff, M. P. Cassidy, C. R. Lawrence, K. E. McBride, and G. L. Farmer, 2007: Impact of disturbed desert soils on duration of mountain snow cover. Geophys. Res. Lett., 34, L12502, doi: 10.1029/2007GL030284.CrossRefGoogle Scholar
  30. Painter, T. H., J. S. Deems, J. Belnap, A. F. Hamlet, C. C. Landry, and B. Udall, 2010: Response of Colorado River runoff to dust radiative forcing in snow. Proc. Natl. Acad. Sci. U. S. A., 107, 17125–17130, doi: 10.1073/pnas.0913139107.CrossRefGoogle Scholar
  31. Painter, T. H., S. M. Skiles, J. S. Deems, A. C. Bryant, and C. C. Landry, 2012: Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations. Water Resour. Res., 48, W07521, doi: 10.1029/2012WR011985.CrossRefGoogle Scholar
  32. Qian, Y., W. I. Gustafson Jr., L. R. Leung, and S. J. Ghan, 2009: Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations. J. Geophys. Res., 114, D03108, doi: 10.1029/2008JD011039.CrossRefGoogle Scholar
  33. Qian, Y., M. G. Flanner, L. R. Leung, and W. Wang, 2011: Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos. Chem. and Phys., 11, 1929–1948, doi: 10.5194/acp-11-1929-2011.CrossRefGoogle Scholar
  34. Qian, Y., and Coauthors, 2015: Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Adv. Atmos. Sci., 32, 64–91, doi: 10.1007/s00376-014-0010-0.CrossRefGoogle Scholar
  35. Qu, X., and A. Hall, 2007: What controls the strength of snowalbedo feedback? J. Climate, 20, 3971–3981, doi: 10.1175/JCLI4186.1.CrossRefGoogle Scholar
  36. Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nat. Geosci., 1, 221–227, doi: 10.1038/ngeo156.CrossRefGoogle Scholar
  37. Randall, D. A., and Coauthors, 1994: Analysis of snow feedbacks in 14 general circulation models. J. Geophys. Res., 99, 20757–20771, doi: 10.1029/94JD01633.CrossRefGoogle Scholar
  38. Randerson, J. T., and Coauthors, 2006: The impact of boreal forest fire on climate warming. Science, 314, 1130–1132, doi: 10.1126/science.1132075.CrossRefGoogle Scholar
  39. Robock, A., 1980: The seasonal cycle of snow cover, sea ice and surface albedo. Mon. Wea. Rev., 108, 267–285, doi: 10.1175/1520-0493(1980)108<0267:TSCOSC>2.0.CO;2.CrossRefGoogle Scholar
  40. Robock, A., 1983: Ice and snow feedbacks and the latitudinal and seasonal distribution of climate sensitivity. J. Atmos. Sci., 40, 986–997, doi: 10.1175/1520-0469(1983)040<0986: IASFAT>2.0.CO;2.CrossRefGoogle Scholar
  41. Roeckner, E., and Coauthors, 2003: The Atmospheric General Circulation Model ECHAM5, Part 1. Tech. Rep. No. 349, Max-Planck-Institute for Meteorology, Hamburg, Germany.Google Scholar
  42. Rutter, N., and Coauthors, 2009: Evaluation of forest snow processes models (SnowMIP2). J. Geophys. Res., 114, D06111, doi: 10.1029/2008JD011063.CrossRefGoogle Scholar
  43. Siemer, A. H., 1988: One dimensional EBM of a snow cover taking into account liquid water transmission. Ber. Inst. Meteorol., 34, 126.Google Scholar
  44. Skiles, S. M., and T. Painter, 2017: Daily evolution in dust and black carbon content, snow grain size, and snow albedo during snowmelt, Rocky Mountains, Colorado. J. Glaciol., 63, 118–132, doi: 10.1017/jog.2016.125.CrossRefGoogle Scholar
  45. Skiles, S. M., T. Painter, and G. S. Okin, 2017: A method to retrieve the spectral complex refractive index and single scattering optical properties of dust deposited in mountain snow. J. Glaciol., 63, 133–147, doi: 10.1017/jog.2016.126.CrossRefGoogle Scholar
  46. Skiles, S. M., T. H. Painter, J. S. Deems, A. C. Bryant, and C. C. Landry, 2012: Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates. Water Resour. Res., 48, W07522, doi: 10.1029/2012WR011986.CrossRefGoogle Scholar
  47. Steltzer, H., C. Landry, T. H. Painter, J. Anderson, and E. Ayres, 2009: Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes. Proceedings of the National Academy of Sciences of the United States of America, 106, 11629–11634, doi: 10.1073/pnas. 0900758106.CrossRefGoogle Scholar
  48. Sun, S. F., and Y. K. Xue, 2001: Implementing a new snow scheme in simplified simple biosphere model. Adv. Atmos. Sci., 18, 335–354, doi: 10.1007/BF02919314.CrossRefGoogle Scholar
  49. Sun, S. F., J. M. Jin, and Y. K. Xue, 1999: A simple snowatmosphere-soil transfer model. J. Geophys. Res., 104, 19587–19597, doi: 10.1029/1999JD900305.CrossRefGoogle Scholar
  50. Thackeray, C. W., and C. G. Fletcher, 2016: Snow albedo feedback: Current knowledge, importance, outstanding issues and future directions. Progress in Physical Geography, 40, 392–408, doi: 10.1177/0309133315620999.CrossRefGoogle Scholar
  51. Toon, O. B., C. P. McKay, T. P. Ackerman, and K. Santhanam, 1989: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 94, 16287–16301, doi: 10.1029/JD094iD13p16287.CrossRefGoogle Scholar
  52. Verseghy, D. L., 1991: Class—A Canadian land surface scheme for GCMS. I. Soil model. Int. J. Climatol., 11, 111–133, doi: 10.1002/joc.3370110202.CrossRefGoogle Scholar
  53. Vionnet, V., E. Brun, S. Morin, A. Boone, S. Faroux, P. Le Moigne, E. Martin, and J.-M. Willemet, 2012: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2. Geoscientific Model Development, 5, 773–791, doi: 10.5194/gmd-5-773-2012.CrossRefGoogle Scholar
  54. Waliser, D., and Coauthors, 2011: Simulating cold season snowpack: Impacts of snow albedo and multi-layer snow physics. Climatic Change, 109, 95–117, doi: 10.1007/s10584-011-0312-5.CrossRefGoogle Scholar
  55. Warren, S. G., and W. J. Wiscombe, 1980: A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci., 37, 2734–2745, doi: 10.1175/1520-0469(1980) 037<2734:AMFTSA>2.0.CO;2.CrossRefGoogle Scholar
  56. Wiscombe, W. J., and S. G. Warren, 1980: A model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci., 37, 2712–2733, doi: 10.1175/1520-0469(1980)037<2712:AMFTSA> 2.0.CO;2.CrossRefGoogle Scholar
  57. Xu, B. Q., and Coauthors, 2009: Black soot and the survival of Tibetan glaciers. Proc. Natl. Acad. Sci. U. S. A., 106, 22114–22118, doi: 10.1073/pnas.0910444106.CrossRefGoogle Scholar
  58. Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345–364, doi: 10.1175/1520-0442(1991)004<0345: ASBMFG>2.0.CO;2.CrossRefGoogle Scholar
  59. Yang, F. L., A. Kumar, W. Q. Wang, H. M. H. Juang, and M. Kanamitsu, 2001: Snow-albedo feedback and seasonal climate variability over North America. J. Climate, 14, 4245–4248, doi: 10.1175/1520-0442(2001)014<4245:SAFASC>2.0.COCrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Efang Zhong
    • 1
    • 2
  • Qian Li
    • 1
    • 3
  • Shufen Sun
    • 1
  • Wen Chen
    • 1
  • Shangfeng Chen
    • 1
  • Debashis Nath
    • 1
  1. 1.Center for Monsoon System Research, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations