Advances in Atmospheric Sciences

, Volume 34, Issue 11, pp 1290–1300 | Cite as

Why was the strengthening of rainfall in summer over the Yangtze River valley in 2016 less pronounced than that in 1998 under similar preceding El Niño events?—Role of midlatitude circulation in August

Original Paper


It is widely recognized that rainfall over the Yangtze River valley (YRV) strengthens considerably during the decaying summer of El Niño, as demonstrated by the catastrophic flooding suffered in the summer of 1998. Nevertheless, the rainfall over the YRV in the summer of 2016 was much weaker than that in 1998, despite the intensity of the 2016 El Niño having been as strong as that in 1998. A thorough comparison of the YRV summer rainfall anomaly between 2016 and 1998 suggests that the difference was caused by the sub-seasonal variation in the YRV rainfall anomaly between these two years, principally in August. The precipitation anomaly was negative in August 2016—different to the positive anomaly of 1998.

Further analysis suggests that the weaker YRV rainfall in August 2016 could be attributable to the distinct circulation anomalies over the midlatitudes. The intensified “Silk Road Pattern” and upper-tropospheric geopotential height over the Urals region, both at their strongest since 1980, resulted in an anticyclonic circulation anomaly over midlatitude East Asia with anomalous easterly flow over the middle-to-lower reaches of the YRV in the lower troposphere. This easterly flow reduced the climatological wind, weakened the water vapor transport, and induced the weaker YRV rainfall in August 2016, as compared to that in 1998. Given the unique sub-seasonal variation of the YRV rainfall in summer 2016, more attention should be paid to midlatitude circulation—besides the signal in the tropics—to further our understanding of the predictability and variation of YRV summer rainfall.

Key words

Yangtze River valley summer rainfall super El Niño sub-seasonal variation Silk Road Pattern 

摘 要

一般认为, 在厄尔尼诺衰退年, 长江流域夏季降水会明显增强, 比如1998年灾难性的大洪水. 然而, 同样是超级厄尔尼诺衰退年, 2016年夏季降水则较1998年明显偏弱. 本文研究发现它们的差异主要来自长江流域降水的次季节(主要是8月份)变化. 2016年8月份长江流域降水有明显负异常, 与1998年相反. 本文进一步的研究发现中纬度显著的环流异常导致了2016年8月偏弱的长江流域降水. 在2016年8月, “丝绸之路遥相关”和乌拉尔山地区的位势高度异常显著, 为近40年来最强, 它们会导致中纬度东亚地区出现显著的反气旋式环流异常, 引起长江中下游地区异常的东风异常, 进而会减弱副高外围气候态风场和水汽输送, 导致长江流域降水偏少. 基于2016年独特的次季节变化特征, 本工作表明研究长江流域夏季降水可预测性和变化特征时, 不能仅仅考虑热带的信号, 更需要关注中纬度环流的特征.


长江流域 夏季降水 超级厄尔尼诺 次季节变化 丝绸之路遥相关 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the two anonymous reviewers for their valuable comments. This study was supported by the National Natural Science Foundation of China (Grant Nos. 41320104007, U1502233, 41675078 and 41461164005).


  1. Chan, J. C. L., W. X. Ai, and J. J. Xu, 2002: Mechanisms responsible for the maintenance of the 1998 South China Sea summer monsoon. J. Meteorol. Soc. Japan., 80, 1103–1113, doi: 10.2151/jmsj.80.1103.CrossRefGoogle Scholar
  2. Chang, C.-P., Y. S. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 4310–4325, doi: 10.1175/1520-0442(2000)013 <4310:IAIVOT>2.0.CO;2.CrossRefGoogle Scholar
  3. Chen, G. X., W. B. Li, Z. J. Yuan, and Z. P. Wen, 2005: Evolution mechanisms of the intraseasonal oscillation associated with the Yangtze River Basin flood in 1998. Science in China Series D, 48, 957–967, doi: 10.1360/03yd0278.CrossRefGoogle Scholar
  4. Chen, W., J. K. Park, B. W. Dong, R. Y. Lu, and W. S. Jung, 2012: The relationship between El Niño and the western North Pacific summer climate in a coupled GCM: Role of the transition of El Niño decaying phases. J. Geophys. Res., 117, D12111, doi: 10.1029/2011JD017385.Google Scholar
  5. Chen, W., R. Y. Lu, and B.W. Dong, 2014: Intensified anticyclonic anomaly over the western North Pacific during El Niño decaying summer under a weakened Atlantic thermohaline circulation. J. Geophys. Res., 119, 13637–13650, doi: 10.1002/2014JD022199.Google Scholar
  6. Chen, W., J.-Y. Lee, K.-J. Ha, K.-S. Yun, and R. Y. Lu, 2016: Intensification of the western North Pacific anticyclone response to the short decaying El Niño event due to greenhouse warming. J. Climate, 29, 3607–3627, doi: 10.1175/jcli-d-15-0195.1.CrossRefGoogle Scholar
  7. Chou, C., J.-Y. Tu, and J.-Y. Yu, 2003: Interannual variability of the western North Pacific summer monsoon: Differences between ENSO and non-ENSO years. J. Climate, 16, 2275–2287, doi: 10.1175/2761.1.CrossRefGoogle Scholar
  8. Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 3483–3505, doi: 10.1175/jcli3473.1.CrossRefGoogle Scholar
  9. Ding, Y. H., 1992: Summer monsoon rainfalls in China. Journal of the Meteorological Society of Japan (Series. II), 70, 373–396, doi: 10.2151/jmsj1965.70.1B373.CrossRefGoogle Scholar
  10. Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157–178, doi: 10.1256/qj.01.211.CrossRefGoogle Scholar
  11. Guo, D., L. W. Wang, Z. K. Li, Y. C. Su, H. Tan, and Y. Huang, 2016: Comparison between anomalies of summer rainfall in China in decaying years during super El Niño events of 2015/2016 and 1997/1998. Transactions of Atmospheric Sciences, 39, 835–844, doi: 10.13878/j.cnki.dqkxxb. 20160828010. (in Chinese).Google Scholar
  12. Hong, X. W., and R. Y. Lu, 2016: The meridional displacement of the summer Asian jet, Silk Road Pattern, and tropical SST anomalies. J. Climate, 29, 3753–3766, doi: 10.1175/jcli-d-15-0541.1.CrossRefGoogle Scholar
  13. Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 1661–1671, doi: 10.1175/1520-0469(1993)050<1661: rwpoar>;2.CrossRefGoogle Scholar
  14. Huang, B. Y., and Coauthors, 2015: Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911–930, doi: 10.1175/jcli-d-14-00006.1.CrossRefGoogle Scholar
  15. Huang, R. H., and Y. F. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 21–32, doi: 10.1007/bf02656915.CrossRefGoogle Scholar
  16. Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243–256, doi: 10.2151/jmsj1965.70.1B243.CrossRefGoogle Scholar
  17. Huang, R. H., Y. H. Xu, P. F. Wang, and L. T. Zhou, 1998: The features of the catastrophic flood over the Changjiang River basin during the summer of 1998 and cause exploration. Climatic and Environmental Research, 3, 300–313, doi: 10.3878/j.issn.1006-9585.1998.04.02. (in Chinese)Google Scholar
  18. Jiang, T., Z. W. Kundzewicz, and B. D. Su, 2008: Changes in monthly precipitation and flood hazard in the Yangtze River Basin, China. Int. J. Climatol., 28, 1471–1481, doi: 10.1002/joc.1635.CrossRefGoogle Scholar
  19. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  20. Kawamura, R., T. Matsuura, and S. Iizuka, 2001: Interannual atmosphere-ocean variations in the tropical western North Pacific relevant to the Asian summer monsoon-ENSO coupling. J. Meteor. Soc. Japan, 79, 883–898, doi: 10.2151/jmsj.79.883.CrossRefGoogle Scholar
  21. Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. Journal of the Meteorological Society of Japan. Series II, 87, 561–580, doi: 10.2151/jmsj.87.561.CrossRefGoogle Scholar
  22. Kosaka, Y., J. S. Chowdary, S.-P. Xie, Y.-M. Min, and J.-Y. Lee, 2012: Limitations of seasonal predictability for summer climate over East Asia and the Northwestern Pacific. J. Climate, 25, 7574–7589, doi: 10.1175/JCLI-D-12-00009.1.CrossRefGoogle Scholar
  23. Kuang, X. Y., and Y. C. Zhang, 2006: Impact of the position abnormalities of east Asian subtropical westerly jet on summer precipitation in middle-lower reaches of Yangtze River. Plateau Meteorology, 25, 382–389, doi: 10.3321/j.issn:1000-0534.2006.03.004. (in Chinese)Google Scholar
  24. Lee, S.-S., J.-Y. Lee, K.-J. Ha, B. Wang, and J. K. E. Schemm, 2011: Deficiencies and possibilities for long-lead coupled climate prediction of the western North Pacific-East Asian summer monsoon. Climate Dyn., 36, 1173–1188, doi: 10.1007/s00382-010-0832-0.CrossRefGoogle Scholar
  25. Li, C. F., R. Y. Lu, and B. W. Dong, 2012: Predictability of the western North Pacific summer climate demonstrated by the coupled models of ENSEMBLES. Climate Dyn., 39, 329–346, doi: 10.1007/s00382-011-1274-z.CrossRefGoogle Scholar
  26. Li, C. F., R. Y. Lu, and B. W. Dong, 2014: Predictability of the western North Pacific summer climate associated with different ENSO phases by ENSEMBLES multi-model seasonal forecasts. Climate Dyn., 43, 1829–1845, doi: 10.1007/s00382-013-2010-7.CrossRefGoogle Scholar
  27. Li, C. F., and Coauthors, 2016: Skillful seasonal prediction of Yangtze river valley summer rainfall. Environmental Research Letters, 11, 094002, doi: 10.1088/1748-9326/11/9/094002.CrossRefGoogle Scholar
  28. Li, Y., R. Y. Lu, and B. W. Dong, 2007: The ENSO-Asian monsoon interaction in a coupled ocean-atmosphere GCM. J. Climate, 20, 5164–5177, doi: 10.1175/jcli4289.1.CrossRefGoogle Scholar
  29. Liang, X.-Z., and W.-C. Wang, 1998: Associations between China monsoon rainfall and tropospheric jets. Quart. J. Roy. Meteor. Soc., 124, 2597–2623, doi: 10.1002/qj.49712455204.CrossRefGoogle Scholar
  30. Lin, Z. D., 2014: Intercomparison of the impacts of four summer teleconnections over Eurasia on East Asian rainfall. Adv. Atmos. Sci., 31, 1366–1376, doi: 10.1007/s00376-014-3171-y.CrossRefGoogle Scholar
  31. Lin, Z. D., and R. Y. Lu, 2005: Interannual meridional displacement of the East Asian upper-tropospheric jet stream in summer. Adv. Atmos. Sci., 22, 199–211, doi: 10.1007/BF 02918509.CrossRefGoogle Scholar
  32. Lu, R. Y., 2001: Atmospheric circulations and sea surface temperatures related to the convection over the western Pacific warm pool on the interannual scale. Adv. Atmos. Sci., 18, 270–282, doi: 10.1007/s00376-001-0019-z.CrossRefGoogle Scholar
  33. Lu, R. Y., 2004: Associations among the components of the East Asian summer monsoon system in the meridional direction. J. Meteor. Soc. Japan, 82, 155–165, doi: 10.2151/jmsj.82.155.CrossRefGoogle Scholar
  34. Lu, R. Y., J.-H. Oh, and B.-J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus A, 54, 44–55, Scholar
  35. Sun, X. G., G. X. Jiang, X. J. Ren, and X.-Q. Yang, 2016: Role of intraseasonal oscillation in the persistent extreme precipitation over the Yangtze River Basin during June 1998. J. Geophys. Res., 121, 10453–10469, doi: 10.1002/2016JD025077.Google Scholar
  36. Tao, S., and L. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, London, 60–92.Google Scholar
  37. Tian, B. Q., and K. Fan, 2013: Factors favorable to frequent extreme precipitation in the upper Yangtze River Valley. Meteor. Atmos. Phys., 121, 189–197, doi: 10.1007/s00703-013-0261-9.CrossRefGoogle Scholar
  38. Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536, doi: 10.1175/1520-0442(2000)013 <1517:PEATHD>2.0.CO;2.CrossRefGoogle Scholar
  39. Wu, B., T. J. Zhou, and T. Li, 2009: Contrast of rainfall-SST relationships in the western North Pacific between the ENSODeveloping and ENSO-Decaying summers. J. Climate, 22, 4398–4405, doi: 10.1175/2009JCLI2648.1.CrossRefGoogle Scholar
  40. Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558, doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.CrossRefGoogle Scholar
  41. Xuan, S. L., Q. Y. Zhang, and S. Q. Sun, 2011: Anomalous midsummer rainfall in Yangtze River-Huaihe River valleys and its association with the East Asia westerly jet. Adv. Atmos. Sci., 28, 387–397, doi: 10.1007/s00376-010-0111-3.CrossRefGoogle Scholar
  42. Yasui, S., and M. Watanabe, 2010: Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM. J. Climate, 23, 2093–2114, doi: 10.1175/2009jcli3323.1.CrossRefGoogle Scholar
  43. Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229–241, doi: 10.1007/BF02973084.CrossRefGoogle Scholar
  44. Zhou, T.-J., and R.-C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, doi: 10.1029/2004JD005413.Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Center for Monsoon System Research, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Climate Change Research CenterChinese Academy of SciencesBeijingChina

Personalised recommendations