Advances in Atmospheric Sciences

, Volume 34, Issue 11, pp 1358–1379 | Cite as

Influence of the preceding austral summer Southern Hemisphere annular mode on the amplitude of ENSO decay

  • Fei Zheng
  • Jianping Li
  • Ruiqiang Ding
Original Paper


There is increasing evidence of the possible role of extratropical forcing in the evolution of ENSO. The Southern Hemisphere Annular Mode (SAM) is the dominant mode of atmospheric circulation in the Southern Hemisphere extratropics. This study shows that the austral summer (December–January–February; DJF) SAM may also influence the amplitude of ENSO decay during austral autumn (March–April–May; MAM). The mechanisms associated with this SAM–ENSO relationship can be briefly summarized as follows: The SAM is positively (negatively) correlated with SST in the Southern Hemisphere middle (high) latitudes. This dipole-like SST anomaly pattern is referred to as the Southern Ocean Dipole (SOD). The DJF SOD, caused by the DJF SAM, could persist until MAM and then influence atmospheric circulation, including trade winds, over the Niño3.4 area. Anomalous trade winds and SST anomalies over the Niño3.4 area related to the DJF SAM are further developed through the Bjerkness feedback, which eventually results in a cooling (warming) over the Niño3.4 area followed by the positive (negative) DJF SAM.

Key words

Southern Hemisphere Annular Mode ENSO Southern Ocean Dipole 

摘 要

越来越多的证据表明热带外因子可以影响 ENSO 的发展. 南半球环状模是南半球热带外大气环流的主导模态. 本文分析结果表明, 南半球夏季(12-2月)的南半球环状模, 可以影响衰减期(3–5月)的 ENSO 振幅. 这种南半球环状模影响 ENSO 振幅的物理机制可以归纳如下: 南半球环状模与南半球中(高)纬度的海温呈现正(负)相关. 这种偶极子型的海温异常结构简称为南大洋偶极子. 12-2 月由南半球环状模导致的南大洋偶极子型海温异常, 持续到 3–5 月后可以进而影响大气环流, 包括 Niño3.4 区域的纬向风. 由南半球环状模导致的 Niño3.4 区域的纬向风和海温异常进而通过 Bjerkness 反馈发展起来. 当 12-2 月南半球环状模为正(负)位相时, 3–5月 Niño3.4区域海温偏冷(暖).


南半球环状模 ENSO 南大洋偶极子 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the editor and the anonymous reviewers for their insightful comments and suggestions, which contributed greatly towards improving the manuscript. This work was jointly supported by the China Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201506032), an NSFC project (Grant No. 41405086), and a NationalKeyR&DProgram of China (Grant No. 2016YFA0601801). The datasets, including NCEP–NCAR, 20CR, CMAP, GPCP, and ERSST.v3b, were obtained from NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, via their website: The HadISST dataset was provided by the Met Office Hadley Centre. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output.


  1. Baldwin, M. P., 2001: Annular modes in global daily surface pressure. Geophys. Res. Lett., 28, 4115–4118, doi: 10.1029/2001GL013564.CrossRefGoogle Scholar
  2. Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon.Wea. Rev., 97, 163–172, doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.CrossRefGoogle Scholar
  3. Caballero, R., 2007: Role of eddies in the interannual variability of Hadley cell strength. Geophys. Res. Lett., 34, L22705, doi: 10.1029/2007GL030971.CrossRefGoogle Scholar
  4. Cai, W. J., and I. G. Watterson, 2002: Modes of interannual variability of the Southern Hemisphere circulation simulated by the CSIRO climate model. J. Climate, 15, 1159–1174, doi: 10.1175/1520-0442(2002)015<1159:MOIVOT>2.0.CO;2.CrossRefGoogle Scholar
  5. Chen, S. F., B. Yu, and W. Chen, 2014: An analysis on the physical process of the influence of AO on ENSO. Climate Dyn., 42, 973–989, doi: 10.1007/s00382-012-1654-z.CrossRefGoogle Scholar
  6. Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 4143–4158, doi: 10.1175/JCLI4953.1.CrossRefGoogle Scholar
  7. Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climatic Dyn., 25, 477–496, doi: 10.1007/s00382-005-0040-5.CrossRefGoogle Scholar
  8. Ciasto, L. M., G. R. Simpkins, and M. H. England, 2015: Teleconnections between tropical pacific SST anomalies and extratropical southern hemisphere climate. J. Climate, 28, 56–65, doi: 10.1175/JCLI-D-14-00438.1.CrossRefGoogle Scholar
  9. Compo, G. P., and P. D. Sardeshmukh, 2010: Removing ENSOrelated variations from the climate record. J. Climate, 23, 1957–1978, doi: 10.1175/2009JCLI2735.1.CrossRefGoogle Scholar
  10. Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16, 57–72, doi: 10.1175/1520-0442 (2003)016<0057:UTPOSS>2.0.CO;2.CrossRefGoogle Scholar
  11. Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: patterns and mechanisms. Annual Review of Marine Science, 2, 115–143, doi: 10.1146/annurev-marine-120408-151453.CrossRefGoogle Scholar
  12. Ding, R. Q., J. P. Li, and Y. H. Tseng, 2015: The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Climate Dyn., 44, 2017–2034, doi: 10.1007/s00382-014-2303-5.CrossRefGoogle Scholar
  13. Ding, Q. H., E. J. Steig, D. S. Battisti, and J. M. Wallace, 2012: Influence of the tropics on the Southern Annular Mode. J. Climate, 25, 6330–6348, doi: 10.1175/JCLI-D-11-00523.1.CrossRefGoogle Scholar
  14. Dommenget, D., 2010: The slab ocean El Niño. Geophys. Res. Lett., 37, L20701, doi: 10.1029/2010GL044888.CrossRefGoogle Scholar
  15. Feldstein, S. B., and S. Lee, 1998: Is the atmospheric zonal index driven by an eddy feedback? J. Atmos. Sci., 55, 3077–3086, doi: 10.1175/1520-0469(1998)055<3077:ITAZID>2.0.CO;2.CrossRefGoogle Scholar
  16. Feng, J., and J. P. Li, 2011: Influence of El Niño Modoki on spring rainfall over South China. J. Geophys. Res., 116(D13), D13102, doi: 10.1029/2010JD015160.CrossRefGoogle Scholar
  17. Fogt, R. L., and D. H. Bromwich, 2006: Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the Southern annular mode. J. Climate, 19, 979–997, doi: 10.1175/JCLI3671.1.CrossRefGoogle Scholar
  18. Fogt, R. L., J. Perlwitz, A. J. Monaghan, D. H. Bromwich, J. M. Jones, and G. J. Marshall, 2009a: Historical SAM variability. Part II: Twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 models. J. Climate, 22, 5346–5365, doi: 10.1175/2009JCLI2786.1.CrossRefGoogle Scholar
  19. Gillett, N. P., and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302, 273–275, doi: 10.1126/science.1087440.CrossRefGoogle Scholar
  20. Gong, D. Y., and S. W. Wang, 1999: Definition of Antarctic oscillation index. Geophys. Res. Lett., 26, 459–462, doi: 10.1029/1999GL900003.CrossRefGoogle Scholar
  21. Gong, T. T., S. B. Feldstein, and D. H. Luo, 2010: The impact of ENSO on wave breaking and Southern annular mode events. J. Atmos. Sci., 67, 2854–2870, doi: 10.1175/2010JAS3311.1.CrossRefGoogle Scholar
  22. Gupta, A. S., and M. H. England, 2006: Coupled ocean–atmosphere–ice response to variations in the Southern Annular Mode. J. Climate, 19, 4457–4486, doi: 10.1175/JCLI3843.1.CrossRefGoogle Scholar
  23. Gupta, A. S., and M. H. England, 2007: Coupled oceanatmosphere feedback in the southern annular mode. J. Climate, 20, 3677–3692, doi: 10.1175/JCLI4200.1.CrossRefGoogle Scholar
  24. Hamlington, B. D., R. F. Milliff, H. van Loon, and K.-Y. Kim, 2015: A Southern Hemisphere sea level pressure-based precursor for ENSO warm and cold events. J. Geophys. Res., 120, 2280–2292, doi: 10.1002/2014JD022674.CrossRefGoogle Scholar
  25. Hartmann, D. L., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 1303–1315, doi: 10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2.CrossRefGoogle Scholar
  26. Hong, L. C., Lin Ho, and F. F. Jin, 2014: A southern hemisphere booster of super El Niño. Geophys. Res. Lett., 41, 2142–2149, doi: 10.1002/2014GL059370.CrossRefGoogle Scholar
  27. Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829, doi: 10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.CrossRefGoogle Scholar
  28. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–470, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  29. Kang, S. M., and J. Lu, 2012: Expansion of the Hadley Cell under global warming: Winter versus summer. J. Climate, 25, 8387–8393, doi: 10.1175/JCLI-D-12-00323.1.CrossRefGoogle Scholar
  30. Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 3521–3532, doi: 10.1175/2007JCLI2146.1.CrossRefGoogle Scholar
  31. Kang, S. M., L. M. Polvani, J. C. Fyfe, and M. Sigmond, 2011: Impact of polar ozone depletion on subtropical precipitation. Science, 332, 951–954, doi: 10.1126/science.1202131.CrossRefGoogle Scholar
  32. L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276–287, doi: 10.1175/JCLI3617.1.CrossRefGoogle Scholar
  33. Larson, S., and B. Kirtman, 2013: The pacific meridional mode as a trigger for ENSO in a high-resolution coupled model. Geophys. Res. Lett., 40, 3189–3194, doi: 10.1002/grl.50571.CrossRefGoogle Scholar
  34. Larson, S. M., and B. P. Kirtman, 2014: The pacific meridional mode as an ENSO precursor and predictor in the North American multimodel ensemble. J. Climate, 27, 7018–7032, doi: 10.1175/JCLI-D-14-00055.1.CrossRefGoogle Scholar
  35. Latif, M., and Coauthors, 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103(C7), 14375–14393, doi: 10.1029/97JC03413.CrossRefGoogle Scholar
  36. Lefebvre, W., H. Goosse, R. Timmermann, and T. Fichefet, 2004: Influence of the southern annular mode on the sea ice–ocean system. J. Geophys. Res., 109(C9), 2004, doi: 10.1029/2004JC002403.CrossRefGoogle Scholar
  37. Li, J. P., 2016: Impacts of annular modes on extreme climate events over the East Asian Monsoon region. Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events, J. P. Li, R. Swinbank, R. Grotjahn, and H. Volkert, Eds., Cambridge University Press.CrossRefGoogle Scholar
  38. Li, J. P., and J. X. L. Wang, 2003: A modified zonal index and its physical sense. Geophys. Res. Lett., 30, 1632, doi: 10.1029/2003GL017441.Google Scholar
  39. Li, J. P., and Coauthors, 2013: Progress in air–land–sea interactions in Asia and their role in global and Asian climate change. Chinese Journal of Atmospheric Sciences, 37, 518–538, doi: 10.3878/j.issn.1006-9895.2012.12322. (in Chinese)Google Scholar
  40. Liu, T., J. P. Li, and F. Zheng, 2015: Influence of the boreal autumn southern annular mode on winter precipitation over land in the northern hemisphere. J. Climate, 28, 8825–8839, doi: 10.1175/JCLI-D-14-00704.1.CrossRefGoogle Scholar
  41. Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the southern hemisphere. J. Atmos. Sci., 58, 3312–3327, doi: 10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.CrossRefGoogle Scholar
  42. Luo, D. H., A. R. Lupo, and H. Wan, 2007: Dynamics of eddydriven low-frequency dipole modes. Part I: A simple model of North Atlantic oscillations. J. Atmos. Sci., 64, 3–28, doi: 10.1175/JAS3818.1.CrossRefGoogle Scholar
  43. Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 4134–4143, doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.CrossRefGoogle Scholar
  44. Nan, S. L., and J. P. Li, 2003: The relationship between the summer precipitation in the Yangtze River valley and the boreal spring southern hemisphere annular mode. Geophys. Res. Lett., 30, 2266, doi: 10.1029/2003GL018381.CrossRefGoogle Scholar
  45. Shi, W. J., Z. N. Xiao, and J. J. Xue, 2016: Teleconnected influence of the boreal winter Antarctic Oscillation on the Somali Jet: Bridging role of sea surface temperature in southern high and middle latitudes. Adv. Atmos. Sci., 33, 47–57, doi: 10.1007/s00376-015-5094-7.CrossRefGoogle Scholar
  46. Terray, P., 2011: Southern Hemisphere extra-tropical forcing: A new paradigm for El Niño-Southern Oscillation. Climate Dyn., 36, 2171–2199, doi: 10.1007/s00382-010-0825-z.CrossRefGoogle Scholar
  47. Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016, doi: 10.1175/1520-0442 (2000)013<1000:AMITEC>2.0.CO;2.CrossRefGoogle Scholar
  48. Thompson, D. W. J., and D. J. Lorenz, 2004: The signature of the annular modes in the tropical troposphere. J. Climate, 17, 4330–4342, doi: 10.1175/3193.1.CrossRefGoogle Scholar
  49. Thompson, D.W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741–749, doi: 10.1038/ngeo1296.CrossRefGoogle Scholar
  50. van Loon, H., and D. J. Shea, 1985: The Southern Oscillation. Part IV: The precursors south of 15◦S to the extremes of the oscillation. Mon. Wea. Rev., 113, 2063–2074, doi: 10.1175/1520-0493(1985)113<2063:TSOPIT>2.0.CO;2.CrossRefGoogle Scholar
  51. Vimont D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 3923–3926, doi: 10.1029/2001GL013435.CrossRefGoogle Scholar
  52. Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 2668–2675, doi: 10.1175/1520-0442 (2003)016<2668:TSFMIT>2.0.CO;2.CrossRefGoogle Scholar
  53. Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 3333–3350, doi: 10.1175/JAS3821.1.CrossRefGoogle Scholar
  54. Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536, doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.CrossRefGoogle Scholar
  55. Wang, F., 2010a: Subtropical dipole mode in the Southern Hemisphere: A global view. Geophys. Res. Lett., 37, L10702, doi: 10.1029/2010GL042750.Google Scholar
  56. Wang, F. M., 2010b: Thermodynamic coupled modes in the tropical atmosphere-ocean: An analytical solution. J. Atmos. Sci., 67, 1667–1677, doi: 10.1175/2009JAS3262.1.CrossRefGoogle Scholar
  57. Wang, S.-Y., M. L. L’Heureux, and H. H. Chia, 2012a: ENSO prediction one year in advance using western North Pacific sea surface temperatures. Geophys. Res. Lett., 39, L05702, doi: 10.1029/2012GL050909.Google Scholar
  58. Wang, S. Y., M. L’Heureux, and J. H. Yoon, 2012b: Is global warming changing the ENSO precursor in the western north pacific? 37th NOAA Annual Climate Diagnostics and Prediction Workshop, Fort Collins, CO, NOAA, 115–120.Google Scholar
  59. Watanabe, M., and A. T. Wittenberg, 2012: A method for disentangling El Niño-mean state interaction. Geophys. Res. Lett., 39, L14702, doi: 10.1029/2012GL052013.CrossRefGoogle Scholar
  60. Watterson, I. G., 2000: Southern midlatitude zonal wind vacillation and its interaction with the ocean in GCM simulations. J. Climate, 13, 562–578, doi: 10.1175/1520-0442(2000)013<0562:SMZWVA>2.0.CO;2.CrossRefGoogle Scholar
  61. Wu, Z. W., J. P. Li, B. Wang, and X. H. Liu, 2009: Can the Southern Hemisphere annular mode affect China winter monsoon? J. Geophys. Res., 114(D11), D11107, doi: 10.1029/2008JD011501.CrossRefGoogle Scholar
  62. Xie, S. P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195–208, doi: 10.1175/BAMS-85-2-195.CrossRefGoogle Scholar
  63. Yamazaki, K., and M. Watanabe, 2015: Effects of extratropical warming on ENSO amplitudes in an ensemble of a coupled GCM. Climate Dyn., 44, 679–693, doi: 10.1007/s00382-014-2145-1.CrossRefGoogle Scholar
  64. Zhang, H. H, A. Clement, and P. Di Nezio, 2014a: The south pacific meridional mode: A mechanism for ENSO-like variability. J. Climate, 27, 769–783, doi: 10.1175/JCLI-D-13-00082.1.CrossRefGoogle Scholar
  65. Zhang, H. H., A. Clement, and B. Medeiros, 2016: The meridional mode in an idealized aquaplanet model: Dependence on the mean state. J. Climate, 29, 2889–2905, doi: 10.1175/JCLI-D-15-0399.1.CrossRefGoogle Scholar
  66. Zhang, Y., X. Q. Yang, Y. Nie, and G. Chen, 2012: Annular modelike variation in a multilayer quasigeostrophic model. J. Atmos. Sci., 69, 2940–2958, doi: 10.1175/JAS-D-11-0214.1.CrossRefGoogle Scholar
  67. Zhang, H. H., C. Deser, A. Clement, and R. Tomas, 2014b: Equatorial signatures of the pacific meridional modes: Dependence on mean climate state. Geophys. Res. Lett., 41, 568–574, doi: 10.1002/2013GL058842.CrossRefGoogle Scholar
  68. Zheng, F., and J. P. Li, 2012: Impact of preceding boreal winter southern hemisphere annular mode on spring precipitation over south China and related mechanism. Chinese Journal of Geophysics, 55, 3542–3557, doi: 10.6038/j.issn.0001-5733.2012.11.004. (in Chinese)Google Scholar
  69. Zheng, F., J. P. Li, L. Wang, F. Xie, and X. F. Li, 2015a: Crossseasonal influence of the December–February southern hemisphere annular mode on March–May meridional circulation and precipitation. J. Climate, 28, 6859–6881, doi: 10.1175/JCLI-D-14-00515.1.CrossRefGoogle Scholar
  70. Zheng, F., J. P. Li, J. Feng, Y. J. Li, and Y. Li, 2015b: Relative importance of the austral summer and autumn SAM in modulating southern hemisphere extratropical autumn SST. J. Climate, 28, 8003–8020, doi: 10.1175/JCLI-D-15-0170.1.CrossRefGoogle Scholar
  71. Zhou, T. J., and R. C. Yu, 2004: Sea-surface temperature induced variability of the Southern Annular Mode in an atmospheric general circulation model. Geophys. Res. Lett., 31, L24206, doi: 10.1029/2004GL021473.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
  3. 3.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  4. 4.Plateau Atmosphere and Environment Key Laboratory of Sichuan ProvinceChengdu University of Information TechnologyChengduChina

Personalised recommendations