Skip to main content
Log in

Long-Term Trends of Carbon Monoxide Total Columnar Amount in Urban Areas and Background Regions: Ground- and Satellite-based Spectroscopic Measurements

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A comparative study was carried out to explore carbon monoxide total columnar amount (CO TC) in background and polluted atmosphere, including the stations of ZSS (Zvenigorod), ZOTTO (Central Siberia), Peterhof, Beijing, and Moscow, during 1998–2014, on the basis of ground- and satellite-based spectroscopic measurements. Interannual variations of CO TC in different regions of Eurasia were obtained from ground-based spectroscopic observations, combined with satellite data from the sensors MOPITT (2001–14), AIRS (2003–14), and IASI MetOp-A (2010–13). A decreasing trend in CO TC (1998–2014) was found at the urban site of Beijing, where CO TC decreased by 1.14%±0.87% yr−1. Meanwhile, at the Moscow site, CO TC decreased remarkably by 3.73%±0.39% yr−1. In the background regions (ZSS, ZOTTO, Peterhof), the reduction was 0.9%–1.7% yr−1 during the same period. Based on the AIRSv6 satellite data for the period 2003–14, a slight decrease (0.4%–0.6% yr−1) of CO TC was detected over the midlatitudes of Eurasia, while a reduction of 0.9%–1.2% yr−1 was found in Southeast Asia. The degree of correlation between the CO TC derived from satellite products (MOPITTv6 Joint, AIRSv6 and IASI MetOp-A) and ground-based measurements was calculated, revealing significant correlation in unpolluted regions. While in polluted areas, IASI MetOp-A and AIRSv6 data underestimated CO TC by a factor of 1.5–2.8. On average, the correlation coefficient between ground- and satellite-based data increased significantly for cases with PBL heights greater than 500 m.

摘要

基于1998-2014年期间地基和卫星高光谱辐射测量数据对污染和背景地区的CO总量进行了综合比较研究, 包括了莫斯科郊区ZSS (Zvenigorod)站, 西伯利亚中部ZOTTO站, 圣彼得堡Peterhof站, 北京和莫斯科观测站所代表的附近地区. 利用较长时期的地基高光谱观测结合卫星高光谱观测数据获得了欧亚大陆不同地区的CO柱总量的年际变化特征. 采用的卫星数据有MOPITT (2001–2014), AIRS (2003–2014)和IASI MetOp-A (2010–2013). 观测数据分析表明, 北京都市区的CO柱总量(1998-2014)呈现下降趋势, 年均速率为1.14% ± 0.87%, 而莫斯科地区下降幅度很大, 达到年均3.73% ± 0.39%. 在作为大都市参照的乡村背景地区(如ZSS, ZOTTO, Peterhof), 同期CO柱总量下降趋势为年均0.9%–1.7%. 基于2003-2014年间的AIRSv6卫星数据产品分析发现, 欧亚大陆中纬度地区CO柱总量有小幅度下降, 只有0.4%–0.6% 每年, 而东南亚地区下降幅度较大, 达到0.9%–1.2%每年. 从卫星数据(MOPITTv6, AIRSv6和IASI MetOp-A)的相关性分析看出, 洁净地区的相关性较高, 而对于污染地区, IASI MetOp-A 和AIRSv6 数据严重低估了CO柱总量, 达到1.5–2.8倍. 当大气边界层高度大于500米时, 地基和卫星观测数据的相关系数总体上显著增大.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Air Resources Laboratory, 2014: Gridded Meteorological Data Archives (GDAS1 Dataset). [Available online from http://arlftp.arlhq.noaa.gov/pub/archives/gdas1]

    Google Scholar 

  • Arshinov, M. Y., and Coauthors, 2014: Comparison between satellite spectrometric and aircraft measurements of the gaseous composition of the troposphere over Siberia during the forest fires of 2012. Izvestiya, Atmospheric and Oceanic Physics, 50, 916–928, https://doi.org/10.1134/S0001433814090047.

    Article  Google Scholar 

  • August, T., and Coauthors, 2012: IASI on Metop-A: Operational Level 2 retrievals after five years in orbit. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 1340–1371, https://doi.org/10.1016/j.jqsrt.2012.02.028.

    Article  Google Scholar 

  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sci, 41, 253–264, https://doi.org/10.1109/TGRS.2002.808356.

    Article  Google Scholar 

  • Buchholz, R. R., and Coauthors, 2017: Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC. Atmospheric Measurement Techniques, 10, 1927–1956, https://doi.org/10.5194/amt-10-1927-2017.

    Article  Google Scholar 

  • Clerbaux, C., J. Hadji-Lazaro, S. Turquety, G. Mégie, and P.-F. Coheur, 2003: Trace gas measurements from infrared satellite for chemistry and climate applications. Atmos. Chem. Phys., 3, 1495–1508, https://doi.org/10.5194/acp-3-1495-2003.

    Article  Google Scholar 

  • Clerbaux, C., and Coauthors, 2009: Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys., 9, 6041–6054, https://doi.org/10.5194/acp-9-6041-2009.

    Article  Google Scholar 

  • Clerbaux, C., S. Turquety, and P. Coheur, 2010: Infrared remote sensing of atmospheric composition and air quality: Towards operational applications. Comptes Rendus Geoscience, 342, 349–356, https://doi.org/10.1016/j.crte.2009.09.010.

    Article  Google Scholar 

  • Collaud Coen, M., and Coauthors, 2013: Aerosol decadal trends— Part 1: In-situ optical measurements at GAW and IMPROVE stations. Atmos. Chem. Phys., 13, 869–894, https://doi.org/10.5194/acp-13-869-2013.

    Article  Google Scholar 

  • Crevoisier, C., A. Chedin, and N. A. Scott, 2003: AIRS channel selection for CO2 and other trace-gas retrievals. Quart. J. Roy. Meteor. Soc., 129, 2719–2740, https://doi.org/10.1256/qj.02.180.

    Article  Google Scholar 

  • Deeter, M. N., and Coauthors, 2003: Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument. J. Geophys. Res., 108(D14), 4399, https://doi.org/10.1029/2002JD003186.

    Article  Google Scholar 

  • Deeter, M. N., and Coauthors, 2013: Validation of MOPITT Version 5 thermal-infrared, near-infrared, and multispectral carbon monoxide profile retrievals for 2000–2011. J. Geophys. Res., 118, 6710–6725, https://doi.org/10.1002/jgrd.50272.

    Google Scholar 

  • Deeter, M. N., and Coauthors, 2014: The MOPITT Version 6 product: Algorithm enhancements and validation. Atmospheric Measurement Techniques, 7, 3623–3632, https://doi.org/10.5194/amt-7-3623-2014.

    Article  Google Scholar 

  • Deeter, M. N., D. P. Edwards, G. L. Francis, J. C. Gille, S. Mart´ınez-Alonso, H. M. Worden, and C. Sweeney, 2017: A climate-scale satellite record for carbon monoxide: The MOPITT Version 7 product. Atmospheric Measurement Techniques, 10, 2533–2555, https://doi.org/10.5194/amt-10-2533-2017.

    Article  Google Scholar 

  • Dianov-Klokov, V. I., L. N. Yurganov, E. I. Grechko, and A. V. Dzhola, 1989: Spectroscopic measurements of atmospheric carbon monoxide and methane. 1: Latitudinal distribution. Journal of Atmospheric Chemistry, 8, 139–151, https://doi. org/10.1007/BF00053719.

    Article  Google Scholar 

  • Drummond, J. R., J. S. Zou, F. Nichitiu, J. Kar, R. Deschambaut, and J. Hackett, 2010: A review of 9-year performance and operation of the MOPITT instrument. Advances in Space Research, 45, 760–774, https://doi.org/10.1016/j.asr. 2009.11.019.

    Article  Google Scholar 

  • Duncan, B. N., J. A. Logan, I. Bey, I. A. Megretskaia, R. M. Yantosca, P. C. Novelli, N. B. Jones, and C. P. Rinsland, 2007: Global budget of CO, 1988–1997: Source estimates and validation with a global model. J. Geophys. Res., 112, D22301, https://doi.org/10.1029/2007JD008459.

    Article  Google Scholar 

  • Fokeeva, E. V., A. N. Safronov, V. S. Rakitin, L. N. Yurganov, E. I. Grechko, and R. A. Shumskii, 2011: Investigation of the 2010 July–August fires impact on carbon monoxide atmospheric pollution in Moscow and its outskirts, estimating of emissions. Izvestiya, Atmospheric and Oceanic Physics, 47, 682–698, https://doi.org/10.1134/S0001433811060041.

    Article  Google Scholar 

  • Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950-2003. J. Geophys. Res., 112, D09301, https://doi.org/10.1029/2006JD007485.

    Google Scholar 

  • Garrett, T., C. F. Zhao, and P. Novelli, 2010: Assessing the relative contributions of transport efficiency and scavenging to seasonal variability in Arctic aerosol. Tellus B, 62, 190–196, https://doi.org/10.1111/j.1600-0889.2010.00453.x.

    Article  Google Scholar 

  • Garsia, O., M. Schneider, F. Hase, T. Blumenstok, A. Wiegele, E. Sepúlveda, and A. Gómez-Peláez, 2013: Validation of the IASI operational CH4 and N2O products using ground-based Fourier Transform Spectrometer: Preliminary results at the Iza˜na Observatory (28◦N, 17◦W). Annals of Geophysics, 56, Fast Track-1, https://doi.org/10.4401/ag-6326.

  • Golitsyn, G. S., and Coauthors, 2011: Extreme carbon monoxide pollution of the atmospheric boundary layer in Moscow region in the summer of 2010. Doklady Earth Sciences, 441, 1666–1672, https://doi.org/10.1134/S1028334X11120014.

    Article  Google Scholar 

  • Golitsyn, G. S., and Coauthors, 2015: Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol. Izvestiya, Atmospheric and Oceanic Physics, 51, 1–11, https://doi.org/10.1134/S0001433815010041.

    Article  Google Scholar 

  • Hase, F., T. Blumenstock, and C. Paton-Walsh, 1999: Analysis of the instrumental line shape of high-resolution Fourier transform IR spectrometers with gas cell measurements and new retrieval software. Appl. Opt., 38, 3417–3422, https://doi.org/10.1364/AO.38.003417.

    Article  Google Scholar 

  • Hase, F., J. W. Hannigan, M. T. Coffey, A. Goldman, M. Höpfner, N. B. Jones, C. P. Rinsland, and S. W. Wood, 2004: Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 87, 25–52, https://doi.org/10.1016/j.jqsrt.2003.12.008.

    Article  Google Scholar 

  • Hilboll, A., A. Richter, and J. P. Burrows, 2013: Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments. Atmos. Chem. Phys., 13, 4145–4169, http://dx.doi.org/10.5194/acp-13-4145-2013.

    Article  Google Scholar 

  • IPCC, 2001: Climate Change 2001: The Physical Science Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK and New York, USA.

    Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK and New York, USA.

    Google Scholar 

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK and New York, USA.

    Google Scholar 

  • Khalil, M. A. K., J. P. Pinto, and M. J. Shearer, 1999: Preface: Atmospheric carbon monoxide. Chemosphere: Global Change Science 1, xi–xiii.

    Google Scholar 

  • Makarova, M. V., A. V. Poberovskii, and Y. M. Timofeev, 2004: Temporal Variability of Total Atmospheric Carbon Monoxide over St. Petersburg. Izvestiya, Atmospheric and Oceanic Physics, 40, 313–322.

    Google Scholar 

  • Makarova, M. V., A. V. Poberovskii, and S. I. Osipov, 2011: Time Variations of the Total CO Content in the Atmosphere near St. Petersburg. Izvestiya, Atmospheric and Oceanic Physics, 47, 739–746, https://doi.org/10.1134/S0001433811060090.

    Article  Google Scholar 

  • McMillan, W. W., K. D. Evans, C. D. Barnet, E. S. Maddy, G. W. Sachse, and G. S. Diskin, 2011: Validating the AIRS Version 5 CO retrieval with DACOM in situ measurements during INTEX-A and -B. IEEE Trans. Geosci. Remote Sens., 49, 2802–2813, https://doi.org/10.1109/TGRS.2011.2106505.

    Article  Google Scholar 

  • Olsen, E. T., 2015: AIRS/AMSU/HSB Version 6: Level 2 Product User Guide. http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v6 docs/v6releasedocs-1/V6 L2 Product User Guide.pdf.

    Google Scholar 

  • Rakitin, V. S., E. V. Fokeeva, E. I. Grechko, A. V. Dzhola, and R. D. Kuznetsov, 2011: Variations of the total content of carbon monoxide over Moscow megapolis. Izvestiya, Atmospheric and Oceanic Physics, 47, 59–66, https://doi.org/10.1134/S0001433810051019.

    Article  Google Scholar 

  • Rakitin, V. S., and Coauthors, 2015: Comparison results of satellite and ground-based spectroscopic measurements of CO, CH4, and CO2 total contents, Atmospheric and Oceanic Optics, 28, 533-542, https://doi.org/10.1134/S1024856015060135.

    Article  Google Scholar 

  • Rakitin, V. S., and Coauthors, 2017: Study of trends of total CO and CH4 contents over Eurasia through analysis of groundbased and satellite. Atmospheric and Oceanic Optics, 30(6), 517–526, https://doi.org/10.1134/S1024856017060112.

    Article  Google Scholar 

  • Safronov, A. N., E. V. Fokeeva, V. S. Rakitin, L. N. Yurganov, and E. I. Grechko, 2012: Carbon monoxide emissions in summer 2010 in the central part of the Russian Plain and estimation of their uncertainties with the use of different land-cover maps. Izvestiya, Atmospheric and Oceanic Physics, 48, 925–940, https://doi.org/10.1134/S0001433812090150.

    Article  Google Scholar 

  • Safronov, A. N., E. V. Fokeeva, V. S. Rakitin, E. I. Grechko, and R. A. Shumsky, 2015: Severe wildfires near Moscow, Russia in 2010: Modeling of carbon monoxide pollution and comparisons with observations. Remote Sens., 7, 395–429, https://doi.org/10.3390/rs70100395.

    Article  Google Scholar 

  • Senten, C., and Coauthors, 2008: Technical Note: New groundbased FTIR measurements at Ile de La Réunion: Observations, error analysis, and comparisons with independent data. Atmos. Chem. Phys., 8, 3483–3508, https://doi.org/10.5194/acp-8-3483-2008.

    Article  Google Scholar 

  • Sitnov, S. A., G. I. Gorchakov, M. A. Sviridenkov, I. A. Gorchakova, A. V. Karpov, and A. B. Kolesnikova, 2013: Aerospace monitoring of smoke aerosol over the European part of Russia in the Period of massive forest and peatbog fires in July–August of 2010. Atmospheric and Oceanic Optics, 26, 265–280, https://doi.org/10.1134/S1024856013040143.

    Article  Google Scholar 

  • Sussmann, R., W. Stremme, M. Buchwitz, and R. de Beek, 2005: Validation of ENVISAT/SCIAMACHY columnar methane by solar FTIR spectrometry at the Ground-Truthing Station Zugspitze. Atmos. Chem. Phys., 5, 2419–2429, https://doi.org/10.5194/acp-5-2419-2005.

    Article  Google Scholar 

  • Vasileva, A. V., K. B. Moiseenko, J.-C. Mayer, N. Jürgens, A. Panov, M. Heimann, and M. O. Andreae, 2011: Assessment of the regional atmospheric impact of wildfire emissions based on CO observations at the ZOTTO tall tower station in central Siberia. J. Geophys. Res., 116, D07301, https://doi.org/10.1029/2010JD014571.

    Article  Google Scholar 

  • Wang, P.-C., G. S. Golitsyn, G. C. Wang, E. I. Grechko, V. S. Rakitin, E. V. Fokeeva, and A. V. Dzhola, 2014: Variation trend and characteristics of anthropogenic CO column content in the atmosphere over Beijing and Moscow. Atmospheric and Oceanic Science Letters, 7, 243–247, https://doi.org/10.3878/j.issn.1674-2834.13.0106.

    Article  Google Scholar 

  • Wang, Y., and C. F. Zhao, 2017: Can MODIS cloud fraction fully represent the diurnal and seasonal variations at DOE ARM SGP and Manus sites? J. Geophys. Res., 122, 329–343, https://doi.org/10.1002/2016JD025954.

    Article  Google Scholar 

  • Worden, H. M., M. N. Deeter, D. P. Edwards, J. C. Gille, J. R. Drummond, and P. Nédélec, 2010: Observations of nearsurface carbon monoxide from space using MOPITT multispectral retrievals. J. Geophys. Res., 115, D18314, https://doi.org/10.1029/2010JD014242.

    Article  Google Scholar 

  • Worden, H. M., and Coauthors, 2013: Decadal record of satellite carbon monoxide observations. Atmos. Chem. Phys., 13, 837–850, https://doi.org/10.5194/acp-13-837-2013.

    Article  Google Scholar 

  • Wunch, D., P. O. Wennberg, G. C. Toon, G. Keppel-Aleks, and Y. G. Yavin, 2007: Emissions of greenhouse gases from a North American megacity. Geophys. Res. Lett., 36, L15810, https://doi.org/10.1029/2009GL039825.

    Google Scholar 

  • Yurganov, L., W. McMillan, E. Grechko, and A. Dzhola, 2010: Analysis of global and regional CO burdens measured from space between 2000 and 2009 and validated by ground-based solar tracking spectrometers. Atmos. Chem. Phys., 10, 3479–3494, https://doi.org/10.5194/acp-10-3479-2010.

    Article  Google Scholar 

  • Yurganov, L. N., and Coauthors, 2011: Satellite-and groundbased CO total column observations over 2010 Russian fires: Accuracy of top-down estimates based on thermal IR satellite data. Atmos. Chem. Phys., 11, 7925–7942, https://doi.org/10.5194/acp-11-7925-2011.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to L. Yurganov for assistance with the interpretation of the satellite data and for useful discussion. The work was jointly supported by the National Key Research and Development Program of China (Grant No. 2017YFB0504000), the National Natural Science Foundation of China (Grant Nos. 41575034 and 41175030), the Russian Science Foundation [Grant Nos. 14-47-00049 (ZOTTO and Beijing data), 16-17-10275 (Moscow and ZSS data) and 14-17-00096 (Peterhof data analysis)], and the Russian Foundation for Basic Research (Grant No. 16-05-00732).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pucai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Elansky, N.F., Timofeev, Y.M. et al. Long-Term Trends of Carbon Monoxide Total Columnar Amount in Urban Areas and Background Regions: Ground- and Satellite-based Spectroscopic Measurements. Adv. Atmos. Sci. 35, 785–795 (2018). https://doi.org/10.1007/s00376-017-6327-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-6327-8

Key words

关键词

Navigation