Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 7, pp 785–795 | Cite as

Long-Term Trends of Carbon Monoxide Total Columnar Amount in Urban Areas and Background Regions: Ground- and Satellite-based Spectroscopic Measurements

  • Pucai Wang
  • N. F. Elansky
  • Yu. M. Timofeev
  • Gengchen Wang
  • G. S. Golitsyn
  • M. V. Makarova
  • V. S. Rakitin
  • Yu. Shtabkin
  • A. I. Skorokhod
  • E. I. Grechko
  • E. V. Fokeeva
  • A. N. Safronov
  • Liang Ran
  • Ting Wang
Original Paper

Abstract

A comparative study was carried out to explore carbon monoxide total columnar amount (CO TC) in background and polluted atmosphere, including the stations of ZSS (Zvenigorod), ZOTTO (Central Siberia), Peterhof, Beijing, and Moscow, during 1998–2014, on the basis of ground- and satellite-based spectroscopic measurements. Interannual variations of CO TC in different regions of Eurasia were obtained from ground-based spectroscopic observations, combined with satellite data from the sensors MOPITT (2001–14), AIRS (2003–14), and IASI MetOp-A (2010–13). A decreasing trend in CO TC (1998–2014) was found at the urban site of Beijing, where CO TC decreased by 1.14%±0.87% yr−1. Meanwhile, at the Moscow site, CO TC decreased remarkably by 3.73%±0.39% yr−1. In the background regions (ZSS, ZOTTO, Peterhof), the reduction was 0.9%–1.7% yr−1 during the same period. Based on the AIRSv6 satellite data for the period 2003–14, a slight decrease (0.4%–0.6% yr−1) of CO TC was detected over the midlatitudes of Eurasia, while a reduction of 0.9%–1.2% yr−1 was found in Southeast Asia. The degree of correlation between the CO TC derived from satellite products (MOPITTv6 Joint, AIRSv6 and IASI MetOp-A) and ground-based measurements was calculated, revealing significant correlation in unpolluted regions. While in polluted areas, IASI MetOp-A and AIRSv6 data underestimated CO TC by a factor of 1.5–2.8. On average, the correlation coefficient between ground- and satellite-based data increased significantly for cases with PBL heights greater than 500 m.

Key words

carbon monoxide trend spectroscopic measurement MOPITT AIRS IASI 

摘要

基于1998-2014年期间地基和卫星高光谱辐射测量数据对污染和背景地区的CO总量进行了综合比较研究, 包括了莫斯科郊区ZSS (Zvenigorod)站, 西伯利亚中部ZOTTO站, 圣彼得堡Peterhof站, 北京和莫斯科观测站所代表的附近地区. 利用较长时期的地基高光谱观测结合卫星高光谱观测数据获得了欧亚大陆不同地区的CO柱总量的年际变化特征. 采用的卫星数据有MOPITT (2001–2014), AIRS (2003–2014)和IASI MetOp-A (2010–2013). 观测数据分析表明, 北京都市区的CO柱总量(1998-2014)呈现下降趋势, 年均速率为1.14% ± 0.87%, 而莫斯科地区下降幅度很大, 达到年均3.73% ± 0.39%. 在作为大都市参照的乡村背景地区(如ZSS, ZOTTO, Peterhof), 同期CO柱总量下降趋势为年均0.9%–1.7%. 基于2003-2014年间的AIRSv6卫星数据产品分析发现, 欧亚大陆中纬度地区CO柱总量有小幅度下降, 只有0.4%–0.6% 每年, 而东南亚地区下降幅度较大, 达到0.9%–1.2%每年. 从卫星数据(MOPITTv6, AIRSv6和IASI MetOp-A)的相关性分析看出, 洁净地区的相关性较高, 而对于污染地区, IASI MetOp-A 和AIRSv6 数据严重低估了CO柱总量, 达到1.5–2.8倍. 当大气边界层高度大于500米时, 地基和卫星观测数据的相关系数总体上显著增大.

关键词

一氧化碳 变化趋势 高光谱测量 MOPITT AIRS IASI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors express their gratitude to L. Yurganov for assistance with the interpretation of the satellite data and for useful discussion. The work was jointly supported by the National Key Research and Development Program of China (Grant No. 2017YFB0504000), the National Natural Science Foundation of China (Grant Nos. 41575034 and 41175030), the Russian Science Foundation [Grant Nos. 14-47-00049 (ZOTTO and Beijing data), 16-17-10275 (Moscow and ZSS data) and 14-17-00096 (Peterhof data analysis)], and the Russian Foundation for Basic Research (Grant No. 16-05-00732).

References

  1. Air Resources Laboratory, 2014: Gridded Meteorological Data Archives (GDAS1 Dataset). [Available online from http://arlftp.arlhq.noaa.gov/pub/archives/gdas1]Google Scholar
  2. Arshinov, M. Y., and Coauthors, 2014: Comparison between satellite spectrometric and aircraft measurements of the gaseous composition of the troposphere over Siberia during the forest fires of 2012. Izvestiya, Atmospheric and Oceanic Physics, 50, 916–928, https://doi.org/10.1134/S0001433814090047. CrossRefGoogle Scholar
  3. August, T., and Coauthors, 2012: IASI on Metop-A: Operational Level 2 retrievals after five years in orbit. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 1340–1371, https://doi.org/10.1016/j.jqsrt.2012.02.028. CrossRefGoogle Scholar
  4. Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sci, 41, 253–264, https://doi.org/10.1109/TGRS.2002.808356. CrossRefGoogle Scholar
  5. Buchholz, R. R., and Coauthors, 2017: Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC. Atmospheric Measurement Techniques, 10, 1927–1956, https://doi.org/10.5194/amt-10-1927-2017. CrossRefGoogle Scholar
  6. Clerbaux, C., J. Hadji-Lazaro, S. Turquety, G. Mégie, and P.-F. Coheur, 2003: Trace gas measurements from infrared satellite for chemistry and climate applications. Atmos. Chem. Phys., 3, 1495–1508, https://doi.org/10.5194/acp-3-1495-2003. CrossRefGoogle Scholar
  7. Clerbaux, C., and Coauthors, 2009: Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys., 9, 6041–6054, https://doi.org/10.5194/acp-9-6041-2009. CrossRefGoogle Scholar
  8. Clerbaux, C., S. Turquety, and P. Coheur, 2010: Infrared remote sensing of atmospheric composition and air quality: Towards operational applications. Comptes Rendus Geoscience, 342, 349–356, https://doi.org/10.1016/j.crte.2009.09.010. CrossRefGoogle Scholar
  9. Collaud Coen, M., and Coauthors, 2013: Aerosol decadal trends— Part 1: In-situ optical measurements at GAW and IMPROVE stations. Atmos. Chem. Phys., 13, 869–894, https://doi.org/10.5194/acp-13-869-2013. CrossRefGoogle Scholar
  10. Crevoisier, C., A. Chedin, and N. A. Scott, 2003: AIRS channel selection for CO2 and other trace-gas retrievals. Quart. J. Roy. Meteor. Soc., 129, 2719–2740, https://doi.org/10.1256/qj.02.180. CrossRefGoogle Scholar
  11. Deeter, M. N., and Coauthors, 2003: Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument. J. Geophys. Res., 108(D14), 4399, https://doi.org/10.1029/2002JD003186. CrossRefGoogle Scholar
  12. Deeter, M. N., and Coauthors, 2013: Validation of MOPITT Version 5 thermal-infrared, near-infrared, and multispectral carbon monoxide profile retrievals for 2000–2011. J. Geophys. Res., 118, 6710–6725, https://doi.org/10.1002/jgrd.50272. Google Scholar
  13. Deeter, M. N., and Coauthors, 2014: The MOPITT Version 6 product: Algorithm enhancements and validation. Atmospheric Measurement Techniques, 7, 3623–3632, https://doi.org/10.5194/amt-7-3623-2014. CrossRefGoogle Scholar
  14. Deeter, M. N., D. P. Edwards, G. L. Francis, J. C. Gille, S. Mart´ınez-Alonso, H. M. Worden, and C. Sweeney, 2017: A climate-scale satellite record for carbon monoxide: The MOPITT Version 7 product. Atmospheric Measurement Techniques, 10, 2533–2555, https://doi.org/10.5194/amt-10-2533-2017. CrossRefGoogle Scholar
  15. Dianov-Klokov, V. I., L. N. Yurganov, E. I. Grechko, and A. V. Dzhola, 1989: Spectroscopic measurements of atmospheric carbon monoxide and methane. 1: Latitudinal distribution. Journal of Atmospheric Chemistry, 8, 139–151, https://doi. org/10.1007/BF00053719.CrossRefGoogle Scholar
  16. Drummond, J. R., J. S. Zou, F. Nichitiu, J. Kar, R. Deschambaut, and J. Hackett, 2010: A review of 9-year performance and operation of the MOPITT instrument. Advances in Space Research, 45, 760–774, https://doi.org/10.1016/j.asr. 2009.11.019.CrossRefGoogle Scholar
  17. Duncan, B. N., J. A. Logan, I. Bey, I. A. Megretskaia, R. M. Yantosca, P. C. Novelli, N. B. Jones, and C. P. Rinsland, 2007: Global budget of CO, 1988–1997: Source estimates and validation with a global model. J. Geophys. Res., 112, D22301, https://doi.org/10.1029/2007JD008459. CrossRefGoogle Scholar
  18. Fokeeva, E. V., A. N. Safronov, V. S. Rakitin, L. N. Yurganov, E. I. Grechko, and R. A. Shumskii, 2011: Investigation of the 2010 July–August fires impact on carbon monoxide atmospheric pollution in Moscow and its outskirts, estimating of emissions. Izvestiya, Atmospheric and Oceanic Physics, 47, 682–698, https://doi.org/10.1134/S0001433811060041. CrossRefGoogle Scholar
  19. Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950-2003. J. Geophys. Res., 112, D09301, https://doi.org/10.1029/2006JD007485. Google Scholar
  20. Garrett, T., C. F. Zhao, and P. Novelli, 2010: Assessing the relative contributions of transport efficiency and scavenging to seasonal variability in Arctic aerosol. Tellus B, 62, 190–196, https://doi.org/10.1111/j.1600-0889.2010.00453.x. CrossRefGoogle Scholar
  21. Garsia, O., M. Schneider, F. Hase, T. Blumenstok, A. Wiegele, E. Sepúlveda, and A. Gómez-Peláez, 2013: Validation of the IASI operational CH4 and N2O products using ground-based Fourier Transform Spectrometer: Preliminary results at the Iza˜na Observatory (28◦N, 17◦W). Annals of Geophysics, 56, Fast Track-1, https://doi.org/10.4401/ag-6326.
  22. Golitsyn, G. S., and Coauthors, 2011: Extreme carbon monoxide pollution of the atmospheric boundary layer in Moscow region in the summer of 2010. Doklady Earth Sciences, 441, 1666–1672, https://doi.org/10.1134/S1028334X11120014. CrossRefGoogle Scholar
  23. Golitsyn, G. S., and Coauthors, 2015: Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol. Izvestiya, Atmospheric and Oceanic Physics, 51, 1–11, https://doi.org/10.1134/S0001433815010041. CrossRefGoogle Scholar
  24. Hase, F., T. Blumenstock, and C. Paton-Walsh, 1999: Analysis of the instrumental line shape of high-resolution Fourier transform IR spectrometers with gas cell measurements and new retrieval software. Appl. Opt., 38, 3417–3422, https://doi.org/10.1364/AO.38.003417. CrossRefGoogle Scholar
  25. Hase, F., J. W. Hannigan, M. T. Coffey, A. Goldman, M. Höpfner, N. B. Jones, C. P. Rinsland, and S. W. Wood, 2004: Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 87, 25–52, https://doi.org/10.1016/j.jqsrt.2003.12.008. CrossRefGoogle Scholar
  26. Hilboll, A., A. Richter, and J. P. Burrows, 2013: Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments. Atmos. Chem. Phys., 13, 4145–4169, http://dx.doi.org/10.5194/acp-13-4145-2013. CrossRefGoogle Scholar
  27. IPCC, 2001: Climate Change 2001: The Physical Science Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK and New York, USA.Google Scholar
  28. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK and New York, USA.Google Scholar
  29. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK and New York, USA.Google Scholar
  30. Khalil, M. A. K., J. P. Pinto, and M. J. Shearer, 1999: Preface: Atmospheric carbon monoxide. Chemosphere: Global Change Science 1, xi–xiii.Google Scholar
  31. Makarova, M. V., A. V. Poberovskii, and Y. M. Timofeev, 2004: Temporal Variability of Total Atmospheric Carbon Monoxide over St. Petersburg. Izvestiya, Atmospheric and Oceanic Physics, 40, 313–322.Google Scholar
  32. Makarova, M. V., A. V. Poberovskii, and S. I. Osipov, 2011: Time Variations of the Total CO Content in the Atmosphere near St. Petersburg. Izvestiya, Atmospheric and Oceanic Physics, 47, 739–746, https://doi.org/10.1134/S0001433811060090. CrossRefGoogle Scholar
  33. McMillan, W. W., K. D. Evans, C. D. Barnet, E. S. Maddy, G. W. Sachse, and G. S. Diskin, 2011: Validating the AIRS Version 5 CO retrieval with DACOM in situ measurements during INTEX-A and -B. IEEE Trans. Geosci. Remote Sens., 49, 2802–2813, https://doi.org/10.1109/TGRS.2011.2106505. CrossRefGoogle Scholar
  34. Olsen, E. T., 2015: AIRS/AMSU/HSB Version 6: Level 2 Product User Guide. http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v6 docs/v6releasedocs-1/V6 L2 Product User Guide.pdf.Google Scholar
  35. Rakitin, V. S., E. V. Fokeeva, E. I. Grechko, A. V. Dzhola, and R. D. Kuznetsov, 2011: Variations of the total content of carbon monoxide over Moscow megapolis. Izvestiya, Atmospheric and Oceanic Physics, 47, 59–66, https://doi.org/10.1134/S0001433810051019. CrossRefGoogle Scholar
  36. Rakitin, V. S., and Coauthors, 2015: Comparison results of satellite and ground-based spectroscopic measurements of CO, CH4, and CO2 total contents, Atmospheric and Oceanic Optics, 28, 533-542, https://doi.org/10.1134/S1024856015060135. CrossRefGoogle Scholar
  37. Rakitin, V. S., and Coauthors, 2017: Study of trends of total CO and CH4 contents over Eurasia through analysis of groundbased and satellite. Atmospheric and Oceanic Optics, 30(6), 517–526, https://doi.org/10.1134/S1024856017060112. CrossRefGoogle Scholar
  38. Safronov, A. N., E. V. Fokeeva, V. S. Rakitin, L. N. Yurganov, and E. I. Grechko, 2012: Carbon monoxide emissions in summer 2010 in the central part of the Russian Plain and estimation of their uncertainties with the use of different land-cover maps. Izvestiya, Atmospheric and Oceanic Physics, 48, 925–940, https://doi.org/10.1134/S0001433812090150. CrossRefGoogle Scholar
  39. Safronov, A. N., E. V. Fokeeva, V. S. Rakitin, E. I. Grechko, and R. A. Shumsky, 2015: Severe wildfires near Moscow, Russia in 2010: Modeling of carbon monoxide pollution and comparisons with observations. Remote Sens., 7, 395–429, https://doi.org/10.3390/rs70100395. CrossRefGoogle Scholar
  40. Senten, C., and Coauthors, 2008: Technical Note: New groundbased FTIR measurements at Ile de La Réunion: Observations, error analysis, and comparisons with independent data. Atmos. Chem. Phys., 8, 3483–3508, https://doi.org/10.5194/acp-8-3483-2008. CrossRefGoogle Scholar
  41. Sitnov, S. A., G. I. Gorchakov, M. A. Sviridenkov, I. A. Gorchakova, A. V. Karpov, and A. B. Kolesnikova, 2013: Aerospace monitoring of smoke aerosol over the European part of Russia in the Period of massive forest and peatbog fires in July–August of 2010. Atmospheric and Oceanic Optics, 26, 265–280, https://doi.org/10.1134/S1024856013040143. CrossRefGoogle Scholar
  42. Sussmann, R., W. Stremme, M. Buchwitz, and R. de Beek, 2005: Validation of ENVISAT/SCIAMACHY columnar methane by solar FTIR spectrometry at the Ground-Truthing Station Zugspitze. Atmos. Chem. Phys., 5, 2419–2429, https://doi.org/10.5194/acp-5-2419-2005. CrossRefGoogle Scholar
  43. Vasileva, A. V., K. B. Moiseenko, J.-C. Mayer, N. Jürgens, A. Panov, M. Heimann, and M. O. Andreae, 2011: Assessment of the regional atmospheric impact of wildfire emissions based on CO observations at the ZOTTO tall tower station in central Siberia. J. Geophys. Res., 116, D07301, https://doi.org/10.1029/2010JD014571. CrossRefGoogle Scholar
  44. Wang, P.-C., G. S. Golitsyn, G. C. Wang, E. I. Grechko, V. S. Rakitin, E. V. Fokeeva, and A. V. Dzhola, 2014: Variation trend and characteristics of anthropogenic CO column content in the atmosphere over Beijing and Moscow. Atmospheric and Oceanic Science Letters, 7, 243–247, https://doi.org/10.3878/j.issn.1674-2834.13.0106. CrossRefGoogle Scholar
  45. Wang, Y., and C. F. Zhao, 2017: Can MODIS cloud fraction fully represent the diurnal and seasonal variations at DOE ARM SGP and Manus sites? J. Geophys. Res., 122, 329–343, https://doi.org/10.1002/2016JD025954. CrossRefGoogle Scholar
  46. Worden, H. M., M. N. Deeter, D. P. Edwards, J. C. Gille, J. R. Drummond, and P. Nédélec, 2010: Observations of nearsurface carbon monoxide from space using MOPITT multispectral retrievals. J. Geophys. Res., 115, D18314, https://doi.org/10.1029/2010JD014242. CrossRefGoogle Scholar
  47. Worden, H. M., and Coauthors, 2013: Decadal record of satellite carbon monoxide observations. Atmos. Chem. Phys., 13, 837–850, https://doi.org/10.5194/acp-13-837-2013. CrossRefGoogle Scholar
  48. Wunch, D., P. O. Wennberg, G. C. Toon, G. Keppel-Aleks, and Y. G. Yavin, 2007: Emissions of greenhouse gases from a North American megacity. Geophys. Res. Lett., 36, L15810, https://doi.org/10.1029/2009GL039825. Google Scholar
  49. Yurganov, L., W. McMillan, E. Grechko, and A. Dzhola, 2010: Analysis of global and regional CO burdens measured from space between 2000 and 2009 and validated by ground-based solar tracking spectrometers. Atmos. Chem. Phys., 10, 3479–3494, https://doi.org/10.5194/acp-10-3479-2010. CrossRefGoogle Scholar
  50. Yurganov, L. N., and Coauthors, 2011: Satellite-and groundbased CO total column observations over 2010 Russian fires: Accuracy of top-down estimates based on thermal IR satellite data. Atmos. Chem. Phys., 11, 7925–7942, https://doi.org/10.5194/acp-11-7925-2011. CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Pucai Wang
    • 1
  • N. F. Elansky
    • 2
  • Yu. M. Timofeev
    • 3
  • Gengchen Wang
    • 1
  • G. S. Golitsyn
    • 2
  • M. V. Makarova
    • 3
  • V. S. Rakitin
    • 2
  • Yu. Shtabkin
    • 2
  • A. I. Skorokhod
    • 2
  • E. I. Grechko
    • 2
  • E. V. Fokeeva
    • 2
  • A. N. Safronov
    • 2
  • Liang Ran
    • 1
  • Ting Wang
    • 1
  1. 1.LAGEO, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.A. M. Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.St. Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations