Advances in Atmospheric Sciences

, Volume 34, Issue 12, pp 1447–1460 | Cite as

Understanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan Plateau

  • Xiaolei Chen
  • Yimin Liu
  • Guoxiong Wu
Original Paper


The temperature biases of 28 CMIP5 AGCMs are evaluated over the Tibetan Plateau (TP) for the period 1979–2005. The results demonstrate that the majority of CMIP5 models underestimate annual and seasonal mean surface 2-m air temperatures (Tas) over the TP. In addition, the ensemble of the 28 AGCMs and half of the individual models underestimate annual mean skin temperatures (Ts) over the TP. The cold biases are larger in Tas than in Ts, and are larger over the western TP. By decomposing the Ts bias using the surface energy budget equation, we investigate the contributions to the cold surface temperature bias on the TP from various factors, including the surface albedo-induced bias, surface cloud radiative forcing, clear-sky shortwave radiation, clear-sky downward longwave radiation, surface sensible heat flux, latent heat flux, and heat storage. The results show a suite of physically interlinked processes contributing to the cold surface temperature bias. Strong negative surface albedo-induced bias associated with excessive snow cover and the surface heat fluxes are highly anticorrelated, and the cancelling out of these two terms leads to a relatively weak contribution to the cold bias. Smaller surface turbulent fluxes lead to colder lower-tropospheric temperature and lower water vapor content, which in turn cause negative clear-sky downward longwave radiation and cold bias. The results suggest that improvements in the parameterization of the area of snow cover, as well as the boundary layer, and hence surface turbulent fluxes, may help to reduce the cold bias over the TP in the models.

Key words

surface temperature cold bias CMIP5 AMIP Tibetan Plateau surface energy budget 


在28个CMIP5-AMIP试验的模式中, 大多数模式对高原气温的模拟存在着冷偏差, 多模式集合和半数以上的模式模拟的地表温度偏低, 主要特征为气温的冷偏差强于地表温度, 高原西部强于高原东部. 通过地表能量平衡分解法, 将地表温度的冷偏差定量分解为反照率反馈项、云辐射强迫项、晴空短波辐射项、晴空向下长波辐射项、感潜热项和地表热通量项. 结果表明, 这些分解项对冷偏差的贡献存在物理上相联系的过程, 积雪覆盖面积偏大引发的反照率反馈作用和晴空向下长波辐射强迫造成了地表温度模拟的冷偏差, 其物理过程是: 低温模式模拟的积雪覆盖面积偏大, 使得地表反照率增大, 地表吸收的短波辐射减少、地表感、潜热通量减少, 使得地表向大气输送的热量和水汽(尽管很小)偏少, 大气温度偏低、水汽含量减少, 导致晴空向下长波辐射减小, 地表温度偏冷. 鉴于积雪覆盖面积在模式模拟中的重要性, 有必要对积雪覆盖面积的参数化方案做出改进, 并提高地表湍流通量, 这可能会有助于减少模式模拟的地表温度冷偏差.


地表温度 冷偏差 CMIP5 AMIP 青藏高原 地表能量平衡 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are indebted to Prof. Jianhua LU for his countless suggestions in conducting the study. This research is supported by the National Natural Science Foundation of China (Grant Nos. 91437219 and 91637312); the Third Tibetan Plateau Scientific Experiment (Grant No. GYHY201406001); the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-DQC018); and the Special Program for Applied Research on Super Computation of the NSFC–Guangdong Joint Fund (second phase).


  1. Annan, J. D., D. J. Lunt, J. C. Hargreaves, and P. J. Valdes, 2005: Parameter estimation in an atmospheric GCM using the ensemble Kalman filter. Nonlinear Processes in Geophysics, 12, 363–371.CrossRefGoogle Scholar
  2. Cess, R. D., and G. L. Potter, 1988: A methodology for understanding and intercomparing atmospheric climate feedback processes in general circulation models. J. Geophys. Res., 93, 8305–8314, doi: 10.1029/JD093iD07p08305.CrossRefGoogle Scholar
  3. Chen, L., and O. W. Frauenfeld, 2014: Surface air temperature changes over the twentieth and twenty-first centuries in china simulated by 20 CMIP5 models. J. Climate, 27(11), 3920–3937, doi: 10.1175/JCLI-D-13-00465.1.CrossRefGoogle Scholar
  4. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc., 137, 553–597. doi: 10.1002/qj.828.CrossRefGoogle Scholar
  5. Duan, A. M., and G. X. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over sub-tropical Asia. Climate Dyn., 24, 793–807, doi: 10.1007/s00382-004-0488-8.CrossRefGoogle Scholar
  6. Duan, A.-M., Z.-X. Xiao, and J. Hu, 2014: Can current AGCMs reproduce historical changes in the atmospheric diabatic heating over the Tibetan Plateau? Atmospheric and Oceanic Science Letters, 7, 143–148, doi: 10.3878/j.issn.1674-2834.13.0084.CrossRefGoogle Scholar
  7. Flohn, H., 1957: Large-scale aspects of the “summer monsoon” in South and East Asia. J. Meteor. Soc. Japan., 35A, 180–186, doi: 10.2151/jmsj1923.35A.0180.CrossRefGoogle Scholar
  8. Frauenfeld, O. W., T. J. Zhang, and M. C. Serreze, 2005: Climate change and variability using European Centre for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau. J. Geophys. Res., 110, D02101, doi: 10.1029/2004JD005230.CrossRefGoogle Scholar
  9. Gao, J., V. Masson-Delmotte, T. Yao, L. Tian, C. Risi, and G. Hoffmann, 2011: Precipitation water stable isotopes in the South Tibetan plateau: Observations and modeling. J. Climate, 24, 3161–3178, doi: 10.1175/2010JCLI3736.1.CrossRefGoogle Scholar
  10. Hua, W. J., H. S. Chen, and S. L. Sun, 2014: Uncertainty in land surface temperature simulation over China by CMIP3/CMIP5 models. Theor. Appl. Climatol., 117, 463–474, doi: 10.1007/s00704-013-1020-z.CrossRefGoogle Scholar
  11. Jackson, J. E, 1991: A User’s Guide to Principal Components. Wiley, New York, 569 pp.CrossRefGoogle Scholar
  12. Ji, Z. M., and S. C. Kang, 2013: Double-nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios. J. Atmos. Sci., 70, 1278–1290, doi: 10.1175/JAS-D-12-0155.1.CrossRefGoogle Scholar
  13. Li, G., and S. P. Xie, 2012: Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys. Res. Lett., 39, L22703, doi: 10.1029/2012GL053777.Google Scholar
  14. Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27(4), 1765–1780, doi: 10.1175/JCLI-D-13-00337.1.CrossRefGoogle Scholar
  15. Li, W. P., G. X. Wu, Y. M. Liu, and Y. Liu, 2001: How the surface processes over the Tibetan Plateau affect the summertime Tibetan Anticyclone: Numerical experiments. Chinese Journal of Atmospheric Sciences, 25, 809–816, doi: 10.3878/j.issn.1006-9895.2001.06.08. (in Chinese with English abstract)Google Scholar
  16. Liu, Y. M., Q. Bao, A. M. Duan, Z. A. Qian, and G. X. Wu, 2007: Recent progress in the impact of the Tibetan Plateau on climate in China. Adv. Atmos. Sci., 24(6), 1060–1076, doi: 10.1007/s00376-007-1060-3.CrossRefGoogle Scholar
  17. Lu, J. H., and M. Cai, 2009a: Seasonality of polar surface warming amplification in climate simulations. Geophys. Res. Lett., 36(16), doi: 10.1029/2009GL040133.Google Scholar
  18. Lu, J. H., and M. Cai, 2009b: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: Formulation. Climate Dyn., 32(6), 873–885, doi: 10.1007/s00382-008-0425-3.CrossRefGoogle Scholar
  19. New, M., M. Hulme, and P. Jones, 1999: Representing twentiethcentury space-time climate variability. Part I: Development of a 1961-90 mean monthly terrestrial climatology. J. Climate, 12, 829–856, doi: 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2.CrossRefGoogle Scholar
  20. Qu, X., and A. Hall, 2007: What controls the strength of snow-albedo feedback? J. Climate, 20(15), 3971–3981, doi: 10.1175/JCLI4186.1.CrossRefGoogle Scholar
  21. Qu, X., and A. Hall, 2014: On the persistent spread in snow-albedo feedback. Climate Dyn., 42, 69–81, doi: 10.1007/s00382-013-1774-0.CrossRefGoogle Scholar
  22. Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloudradiative forcing and climate: Results from the earth radiation budget experiment. Science, 243, 57–63, doi: 10.1126/science.243.4887.57.CrossRefGoogle Scholar
  23. Rangwala, I., 2013: Amplified water vapour feedback at high altitudes during winter. International Journal of Climatology, 33(4), 897–903, doi: 10.1002/joc.3477.CrossRefGoogle Scholar
  24. Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91(8), 1015–1057, doi: 10.1175/2010BAMS3001.1.CrossRefGoogle Scholar
  25. Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088–3111, doi: 10.1175/JCLI3790.1.CrossRefGoogle Scholar
  26. Su, F. G., X. L. Duan, D. L. Chen, Z. C. Hao, and L. Cuo, 2013: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Climate, 26, 3187–3208, doi: 10.1175/JCLI-D-12-00321.1.CrossRefGoogle Scholar
  27. Swenson, S. C., and D. M. Lawrence, 2012: A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance. J. Geophys. Res., 117(D21), D21107, doi: 10.1029/2012JD018178.CrossRefGoogle Scholar
  28. Tao, S.-Y., and Y.-H. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 23–30, doi: 10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2.CrossRefGoogle Scholar
  29. Wang, A. H., and X. B. Zeng, 2012: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res., 117(D5), doi: 10.1029/2011JD016553.Google Scholar
  30. Wang, C. Z., L. P. Zhang, S.-K. Lee, L. X. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Clim. Change, 4(3), 201–205, doi: 10.1038/nclimate2118.CrossRefGoogle Scholar
  31. Wang, X. J., M. X. Yang, G. N. Wan, X. L. Chen, and G. J. Pang, 2013: Qinghai-Xizang (Tibetan) Plateau climate simulation using the regional climate model RegCM3. Climate Research, 57(3), 173–186, doi: 10.3354/cr01167.CrossRefGoogle Scholar
  32. Wen, X. Y., S. W. Wang, J. H. Zhu, and D. Viner, 2006: An overview of China climate change over the 20th century using UK UEA/CRU high resolution grid data. Chinese Journal of Atmospheric Sciences, 30, 894–904, doi: 10.3878/j.issn.1006-9895.2006.05.18. (in Chinese with English abstract)Google Scholar
  33. Wu, G. X., and Y. S. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126, 913–927, doi: 10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2.CrossRefGoogle Scholar
  34. Wu, G. X., Y. M. Liu, B. He, Q. Bao, A. M. Duan, and F.-F. Jin, 2012: Thermal controls on the Asian summer monsoon. Scientific Reports, 2, 404, doi: 10.1038/srep00404.CrossRefGoogle Scholar
  35. Xu, J. W., Y. H. Gao, D. L. Chen, L. H. Xiao, and T. H. Ou, 2017: Evaluation of global climate models for downscaling applications centred over the Tibetan Plateau. International Journal of Climatology, 37, 657–671, doi: 10.1002/joc.4731.CrossRefGoogle Scholar
  36. Yan, Y. F., Y. M. Liu, and J. H. Lu, 2016: Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau and its neighboring regions. J. Geophys. Res., 121(10), 5864–5877, doi: 10.1002/2015JD024591.CrossRefGoogle Scholar
  37. Yang, K., and Coauthors, 2007: Initial CEOP-based review of the prediction skill of operational general circulation models and land surface models. J. Meteor. Soc. Japan, 85, 99–116, doi: 10.2151/jmsj.85A.99.CrossRefGoogle Scholar
  38. Yang, Q. H., and Coauthors, 2016: Albedo of coastal landfast sea ice in Prydz Bay, Antarctica: Observations and parameterization. Adv. Atmos. Sci., 33, 535–543, doi: 10.1007/s0037–015-5114-7.CrossRefGoogle Scholar
  39. Ye, D. Z., and Y. X. Gao, 1979: Qinghai-Xizang Plateau Meteorology. Science Press, Beijing. (in Chinese)Google Scholar
  40. Yeh, T. C., S.W. Luo, and P. C. Chu, 1957: The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding. Acta Meteorologica Sinica, 28, 108–121, doi: 10.11676/qxxb1957.010. (in Chinese with English abstract)Google Scholar
  41. You, Q. L., K. Fraedrich, G. Y. Ren, N. Pepin, and S. C. Kang, 2013: Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data. International Journal of Climatology, 33(6), 1337–1347, doi: 10.1002/joc.3512.CrossRefGoogle Scholar
  42. Yuichiro, O., H. Shigenori, S. Haginoya, and Y. M. Ma, 2006: Recent trends in land surface temperature on the Tibetan Plateau. J. Climate, 19, 2995–3003, doi: 10.1175/JCLI3811.1.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations