Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 4, pp 397–409 | Cite as

Impact of SST Anomaly Events over the Kuroshio–Oyashio Extension on the “Summer Prediction Barrier”

  • Yujie Wu
  • Wansuo Duan
Original Paper

Abstract

The “summer prediction barrier” (SPB) of SST anomalies (SSTA) over the Kuroshio–Oyashio Extension (KOE) refers to the phenomenon that prediction errors of KOE-SSTA tend to increase rapidly during boreal summer, resulting in large prediction uncertainties. The fast error growth associated with the SPB occurs in the mature-to-decaying transition phase, which is usually during the August–September–October (ASO) season, of the KOE-SSTA events to be predicted. Thus, the role of KOE-SSTA evolutionary characteristics in the transition phase in inducing the SPB is explored by performing perfect model predictability experiments in a coupled model, indicating that the SSTA events with larger mature-to-decaying transition rates (Category-1) favor a greater possibility of yielding a more significant SPB than those events with smaller transition rates (Category-2). The KOE-SSTA events in Category-1 tend to have more significant anomalous Ekman pumping in their transition phase, resulting in larger prediction errors of vertical oceanic temperature advection associated with the SSTA events. Consequently, Category-1 events possess faster error growth and larger prediction errors. In addition, the anomalous Ekman upwelling (downwelling) in the ASO season also causes SSTA cooling (warming), accelerating the transition rates of warm (cold) KOE-SSTA events. Therefore, the SSTA transition rate and error growth rate are both related with the anomalous Ekman pumping of the SSTA events to be predicted in their transition phase. This may explain why the SSTA events transferring more rapidly from the mature to decaying phase tend to have a greater possibility of yielding a more significant SPB.

Key words

Kuroshio–Oyashio Extension SST summer prediction barrier error growth 

摘 要

黑潮延伸区海表温度距平(KOE-SSTA)的夏季预报障碍(SPB)现象是指KOE-SSTA的预报误差总在北半球夏季快速增长并导致显著的预报不确定性. 与SPB相关的误差快速增长经常发生在KOE-SSTA事件的成熟-衰减转换位相, 即8-9月. 因此, 本文利用耦合模式设计可预报性试验, 对KOE-SSTA在成熟-衰减转换位相的发展特征对SPB的影响作用进行了研究. 结果表明, 具有较大成熟-衰减位相转换速度的KOE-SSTA事件(Category-1)更容易产生显著的SPB现象. 机制研究表明, Category-1的SSTA事件会在转换位相产生显著的异常Ekman抽吸作用, 从而导致显著的与SSTA事件相关的垂直温度平流误差, 最终导致更快的海温误差增长和更大的海温预报误差. 进一步研究发现, 对于KOE-SSTA事件本身, 成熟-衰减位相的转换速度也是由异常Ekman抽吸作用所产生的SSTA变化所决定的. 因此, KOE-SSTA的位相转换速度和误差增长速率均与事件本身的异常Ekman抽吸作用密切相关. 该特征就是具有更快成熟-衰减位相转换速度的KOE-SSTA事件更容易产生显著SPB现象的主要决定因素.

关键词

黑潮延伸区 SST 夏季预报障碍 误差增长 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful for the insightful comments and constructive suggestions provided by the anonymous reviewers. This work was jointly sponsored by the National Natural Science Foundation of China (Grant No. 41376018), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11010303), the China Meteorological Administration Special PublicWelfare Research Fund (GYHY201506013), the Project for Development of Key Techniques in Meteorological Forecasting Operation (YBGJXM201705), and the Open Foundation of the LASG/IAP/CAS.

References

  1. Cane, M. A., 1983: Oceanographic events during El Niño. Science, 222, 1189–1195, https://doi.org/10.1126/science.222.4629.1189.CrossRefGoogle Scholar
  2. Chang, P., and Coauthors, 2006: Climate fluctuations of tropical coupled system-The role of ocean dynamics. J. Climate, 19, 5122–5174, https://doi.org/10.1175/JCLI3903.1.CrossRefGoogle Scholar
  3. Curtis, S., and R. F. Adler, 2003: Evolution of El Niño-precipitation relationships from satellites and gauges. J. Geophys. Res., 108, 4153, https://doi.org/10.1029/2002JD002690.CrossRefGoogle Scholar
  4. Dai, A., and T. M. L. Wigley, 2000: Global patterns of ENSOinduced precipitation. Geophys. Res. Lett., 27, 1283–1286, https://doi.org/10.1029/1999GL011140.CrossRefGoogle Scholar
  5. de Boisséson, E., V. Thierry, H. Mercier, and G. Caniaux, 2010: Mixed layer heat budget in the Iceland Basin from Argo. J. Geophys. Res., 115(18), C10055, https://doi.org/10.1029/2010JC006283.CrossRefGoogle Scholar
  6. Duan, W. S., and Y. J. Wu, 2015: Season-dependent predictability and error growth dynamics of Pacific Decadal Oscillationrelated sea surface temperature anomalies. Climate Dyn., 44, 1053–1072, https://doi.org/10.1007/s00382-014-2364-5.CrossRefGoogle Scholar
  7. Duan, W. S., X. C. Liu, K. Y. Zhu, and M. Mu, 2009: Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events. J. Geophys. Res., 114(C4), https://doi.org/10.1029/2008JC004925.Google Scholar
  8. Feng, R., W. S. Duan, and M. Mu, 2014: The “winter predictability barrier” for IOD events and its error growth dynamics: Results from a fully coupled GCM. J. Geophys. Res., 119, 8688–8708, https://doi.org/10.1002/2014JC10473.CrossRefGoogle Scholar
  9. Gan, B. L., and L. X. Wu, 2012: Modulation of atmospheric response to North Pacific SST anomalies under global warming: A statistical assessment. J. Climate, 25, 6554–6566, https://doi.org/10.1175/JCLI-D-11-00493.1.CrossRefGoogle Scholar
  10. Guemas, V., F. J. Doblas-Reyes, F. Lienert, Y. Soufflet, and H. Du, 2012: Identifying the causes of the poor decadal climate prediction skill over the North Pacific. J. Geophys. Res., 117(D20), D20111, https://doi.org/10.1029/2012JD018004.CrossRefGoogle Scholar
  11. Jacob, R. L., 1997: Low frequency variability in a simulated atmosphere-ocean system. PhD dissertation, University of Wisconsin-Madison, 155 pp.Google Scholar
  12. Latif, M., T. P. Barnett, M. A. Cane, M. Flügel, N. E. Graham, H. von Storch, J.-S. Xu, and S. E. Zebiak, 1994: A review of ENSO prediction studies. Climate Dyn., 9, 167–179, https://doi.org/10.1007/BF00208250.CrossRefGoogle Scholar
  13. Lau, K.-M., and S. Yang, 1996: The Asian monsoon and predictability of the tropical ocean-atmosphere system. Quart. J. Roy. Meteor. Soc., 122, 945–957, https://doi.org/10.1002/qj.49712253208.Google Scholar
  14. Luo, J.-J., S. Masson, S. Behera, and T. Yamagata, 2007: Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J. Climate, 20, 2178–2190, https://doi.org/10.1175/JCLI4132.1.CrossRefGoogle Scholar
  15. McPhaden, M. J., 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30, 1480, https://doi.org/10.1029/2003GL016872.CrossRefGoogle Scholar
  16. Motokawa, N., N. Matsuo, and N. Iwasaka, 2010: Dominant seasurface temperature anomaly patterns in summer over the North Pacific Ocean. Journal of Oceanography, 66, 581–590, https://doi.org/10.1007/s10872-010-0048-2.CrossRefGoogle Scholar
  17. Philander, S. G. H., 1983: El Niño southern oscillation phenomena. Nature, 302, 295–301, https://doi.org/10.1038/302295a0.CrossRefGoogle Scholar
  18. Schott, F. A., S. P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.CrossRefGoogle Scholar
  19. Stewart, R. H, 2008: Introduction to physical oceanography. [Available online at http://oceanworld.tamu.edu/resources/ocngtextbook/PDFfiles/book.pdf.]Google Scholar
  20. Wang, H., A. Kumar, W. Q. Wang, and Y. Xue, 2012: Seasonality of the Pacific decadal oscillation. J. Climate, 25(1), 25–38, https://doi.org/10.1175/2011JCLI4092.1.CrossRefGoogle Scholar
  21. Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–926, https://doi.org/10.1002/qj.49711850705.CrossRefGoogle Scholar
  22. Wen, C. H., Y. Xue, and A. Kumar, 2012: Seasonal Prediction of North Pacific SSTs and PDO in the NCEP CFS Hindcasts. J. Climate, 25, 5689–5710, https://doi.org/10.1175/JCLI-D-11-00556.1.CrossRefGoogle Scholar
  23. Wu, Y. J., W. S. Duan, and X. Y. Rong, 2016: Seasonal predictability of sea surface temperature anomalies over the Kuroshio-Oyashio Extension: Low in summer and high in winter. J. Geophys. Res., 121, 6862–6873, https://doi.org/10.1002/2016JC011887.CrossRefGoogle Scholar
  24. Yamagata, T., S. K. Behera, J.-J. Luo, S. Masson, M. R. Jury, and S. A. Rao, 2004: Coupled ocean-atmosphere variability in the tropical Indian Ocean. Earth’s Climate: The Ocean-Atmosphere Interaction, C. Wang et al., Eds., American Geophysical Union, 147, 189–211, https://doi.org/10.1029/147GM12.Google Scholar
  25. Yang, Y., S.-P. Xie, L. X. Wu, Y. Kosaka, N.-C. Lau, and G. A. Vecchi, 2015: Seasonality and predictability of the Indian Ocean dipole mode: ENSO forcing and internal variability. J. Climate, 28, 8021–8036, https://doi.org/10.1175/JCLI-D-15-0078.1.CrossRefGoogle Scholar
  26. Yu, Y. S., W. S. Duan, H. Xu, and M. Mu, 2009: Dynamics of nonlinear error growth and season-dependent predictability of El Niño events in the Zebiak-Cane model. Quart. J. Roy. Meteor. Soc., 135, 2146–2160, https://doi.org/10.1002/qj.526.CrossRefGoogle Scholar
  27. Yu, Y. S., M. Mu, W. S. Duan, and T. T. Gong, 2012: Contribution of the location and spatial pattern of initial error to uncertainties in El Niño predictions. J. Geophys. Res., 117, C06018, https://doi.org/10.1029/2011JC007758.Google Scholar
  28. Zhao, X., J. P. Li, and W. J. Zhang, 2012: Summer persistence barrier of sea surface temperature anomalies in the central western North Pacific. Adv. Atmos. Sci., 29, 1159–1173, https://doi.org/10.1007/s00376-012-1253-2.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory for Climate Studies, National Climate CenterChina Meteorological AdministrationBeijingChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.CMA-NJU Joint Laboratory for Climate Prediction StudiesNanjing UniversityNanjingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations