Advertisement

Advances in Atmospheric Sciences

, Volume 34, Issue 7, pp 805–815 | Cite as

Two ultraviolet radiation datasets that cover China

  • Hui Liu
  • Bo HuEmail author
  • Yuesi Wang
  • Guangren Liu
  • Liqin Tang
  • Dongsheng Ji
  • Yongfei Bai
  • Weikai Bao
  • Xin Chen
  • Yunming Chen
  • Weixin Ding
  • Xiaozeng Han
  • Fei He
  • Hui Huang
  • Zhenying Huang
  • Xinrong Li
  • Yan Li
  • Wenzhao Liu
  • Luxiang Lin
  • Zhu Ouyang
  • Boqiang Qin
  • Weijun Shen
  • Yanjun Shen
  • Hongxin Su
  • Changchun Song
  • Bo Sun
  • Song Sun
  • Anzhi Wang
  • Genxu Wang
  • Huimin Wang
  • Silong Wang
  • Youshao Wang
  • Wenxue Wei
  • Ping Xie
  • Zongqiang Xie
  • Xiaoyuan Yan
  • Fanjiang Zeng
  • Fawei Zhang
  • Yangjian Zhang
  • Yiping Zhang
  • Chengyi Zhao
  • Wenzhi Zhao
  • Xueyong Zhao
  • Guoyi Zhou
  • Bo Zhu
Open Access
Data Description Article

Abstract

Ultraviolet (UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization’s measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes.

Key words

ultraviolet radiation observation hybrid model reconstruction China 

摘要

紫外辐射在生态系统, 大气环境, 人体健康以及气候学等研究领域有重要作用. 本论文描述了两个紫外辐射数据集. 一是中国生态系统研究网络(CERN)2005-2015年40个站点紫外辐射小时观测数据集. 对紫外辐射的观测采用CUV3 紫外辐射表, 不确定度为5%, 满足世界气象组织(WMO)的要求. 采用极值法对观测数据进行质量控制. 另一个数据集是紫外辐射日累计重构值, 由全天候紫外辐射估算公式结合混合模型的方法计算获得, 该数据集的时间长度为1961-2014年. 大多数站点紫外辐射重构模型的绝对偏差和均方根误差都小于30%, 且相对偏差为负, 表明该模型对紫外辐射的估算略偏低. 这两个紫外辐射数据集可以提高我们对紫外辐射时空变化特征的认识, 并且可用于研究臭氧生成潜势和大气氧化性以及模拟生态过程.

关键词

紫外辐射 观测 混合模型 重构 中国 

Notes

Acknowledgements

We thank CERN for providing the radiation observations. The global solar radiation data and meteorological elements used in this study were obtained from the CMA, which is highly appreciated by the authors. We also gratefully acknowledge the MODIS Science Team for providing the AOD dataset and the NASA/GSFC Ozone Processing Team for supplying the ozone data.

References

  1. Arola, A., K. Lakkala, A. Bais, J. Kaurola, C. Meleti, and P. Taalas, 2003: Factors affecting short- and long-term changes of spectral UV irradiance at two European stations. J. Geophys. Res.: Atmos., 108(D17), 4549, doi: 10.1029/2003JD003447.CrossRefGoogle Scholar
  2. Bais, A. F., C. S. Zerefos, C. Meleti, I. C. Ziomas, and K. Tourpali, 1993: Spectral measurements of solar UVB radiation and its relations to total ozone, SO2, and clouds. J. Geophys. Res.: Atmos., 98(D3), 5199–5204, doi: 10.1029/92JD02904.CrossRefGoogle Scholar
  3. Bernhard, G., C. R. Booth, J. C. Ehramjian, R. Stone, and E. G. Dutton, 2007: Ultraviolet and visible radiation at Barrow, Alaska: Climatology and influencing factors on the basis of version 2 National Science Foundation network data. J. Geophys. Res.: Atmos., 112(D9), D09101, doi: 10.1029/2006JD007865.CrossRefGoogle Scholar
  4. Calbó, J., D. Pagès, and J. A. González, 2005: Empirical studies of cloud effects on UV radiation: A review. Rev. Geophys., 43(2), RG2002, doi: 10.1029/2004RG000155.CrossRefGoogle Scholar
  5. den Outer, P. N., H. Slaper, J. Kaurola, A., Lindfors, A. Kazantzidis, A. F. Bais, U. Feister, J. Junk, M. Janouch, and W. Josefsson, 2010: Reconstructing of erythemal ultraviolet radiation levels in Europe for the past 4 decades. J. Geophys. Res.: Atmos., 115(D10), D10102, doi: 10.1029/2009JD 012827.CrossRefGoogle Scholar
  6. Ferrero, E., M. Eöry, G. Ferreyra, I. Schloss, H. Zagarese, M. Vernet, and F. Momo, 2006: Vertical mixing and ecological effects of ultraviolet radiation in planktonic communities. Photochemistry and Photobiology, 82(4), 898–902, doi: 10.1562/2005-11-23-RA-736.CrossRefGoogle Scholar
  7. Foyo-Moreno, I., J. Vida, and L. Alados-Arboledas, 1999: A simple all weather model to estimate ultraviolet solar radiation (290–385 nm). J. Appl. Meteor., 38(7), 1020–1026, doi: 10.1175/1520-0450(1999)038<1020:ASAWMT>2.0.CO;2.CrossRefGoogle Scholar
  8. Gueymard, C. A., 2004: The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Solar Energy, 76(4), 423–453, doi: 10.1016/j.solener.2003.08.039.CrossRefGoogle Scholar
  9. Hu, B., Y. S. Wang, and G. R. Liu, 2007: Ultraviolet radiation spatio-temporal characteristics derived from the groundbased measurements taken in China. Atmos. Environ., 41(27), 5707–5718, doi: 10.1016/j.atmosenv.2007.02.044.CrossRefGoogle Scholar
  10. Hu, B., Y. S. Wang, and G. R. Liu, 2010: Variation characteristics of ultraviolet radiation derived from measurement and reconstruction in Beijing, China. Tellus B, 62(2), 100–108, doi: 10.1111/j.1600-0889.2010.00452.x.CrossRefGoogle Scholar
  11. Huang, M. L., H. Jiang, W. M. Ju, and Z. Y. Xiao, 2011: Ultraviolet radiation over two lakes in the middle and lower reaches of the Yangtze River, China: An innovative model for UV estimation. Terrestrial, Atmospheric and Oceanic Sciences, 22(5), 491–506, doi: 10.3319/TAO.2011.05.02.01(A).CrossRefGoogle Scholar
  12. Kerr, J. B., and V. E. Fioletov, 2008: Surface ultraviolet radiation. Atmos.-Ocean, 46(1), 159–184, doi: 10.3137/ao.460108.CrossRefGoogle Scholar
  13. Liu, H., B. Hu, L. Zhang, Y. S. Wang, and P. F. Tian, 2016: Spatiotemporal characteristics of ultraviolet radiation in recent 54 years from measurements and reconstructions over the Tibetan Plateau. J. Geophys. Res.: Atmos., 121(13), 7673–7690, doi: 10.1002/2015JD024378.Google Scholar
  14. Long, C. N., and T. P. Ackerman, 2000: Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. J. Geophys. Res.: Atmos., 105(D12), 15609–15626, doi: 10.1029/2000JD 900077.CrossRefGoogle Scholar
  15. Mayer, B., and A. Kylling, 2005: Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use. Atmospheric Chemistry and Physics, 5, 1855–1877, doi: 10.5194/acp-5-1855-2005.CrossRefGoogle Scholar
  16. Podstawczy´nska, A., 2010: UV and global solar radiation in Łódź, Central Poland. International Journal of Climatology, 30(1), 1–10, doi: 10.1002/joc.1864.Google Scholar
  17. Schwander, H., P. Koepke, and A. Ruggaber, 1997: Uncertainties in modeled UV irradiances due to limited accuracy and availability of input data. J. Geophys. Res.: Atmos., 102(D8), 9419–9429, doi: 10.1029/97JD00244.CrossRefGoogle Scholar
  18. Tang, W. J., K. Yang, J. Qin, C. C. K. Cheng, and J. He, 2011: Solar radiation trend across China in recent decades: A revisit with quality-controlled data. Atmospheric Chemistry and Physics, 11, 393–406, doi: 10.5194/acp-11-393-2011.CrossRefGoogle Scholar
  19. Tang, W. J., J. Qin, K. Yang, X. L. Niu, X. T. Zhang, Y. Yu, and X. D. Zhu, 2013a: Reconstruction of daily photosynthetically active radiation and its trends over China. J. Geophys. Res.: Atmos., 118(23), 13292–13302, doi: 10.1002/2013JD 020527.Google Scholar
  20. Tang, W. J., K. Yang, J. Qin, and M. Min, 2013b: Development of a 50-year daily surface solar radiation dataset over China. Science China Earth Sciences, 56(9), 1555–1565, doi: 10.1007/s11430-012-4542-9.CrossRefGoogle Scholar
  21. Thomas, P., A. Swaminathan, and R. M. Lucas, 2012: Climate change and health with an emphasis on interactions with ultraviolet radiation: A review. Global Change Biology, 18(8), 2392–2405, doi: 10.1111/j.1365-2486.2012.02706.x.CrossRefGoogle Scholar
  22. Wang, L. C., W. Gong, Y. Y. Ma, B. Hu, W. L. Wang, and M. Zhang, 2013: Analysis of ultraviolet radiation in Central China from observation and estimation. Energy, 59, 764–774, doi: 10.1016/j.energy.2013.07.017.CrossRefGoogle Scholar
  23. Wei, K., W. Chen, and R. H. Huang, 2006: Long-term changes of the ultraviolet radiation in China and its relationship with total ozone and precipitation. Adv. Atmos. Sci., 23(5), 700–710, doi: 10.1007/s00376-006-0700-3.CrossRefGoogle Scholar
  24. Williamson, C. E., and Coauthors, 2014: Solar ultraviolet radiation in a changing climate. Nature Climate Change, 4(6), 434–441, doi: 10.1038/nclimate2225.CrossRefGoogle Scholar
  25. Xia, X., Z. Li, P. Wang, M. Cribb, H. Chen, and Y. Zhao, 2008: Analysis of relationships between ultraviolet radiation (295–385 nm) and aerosols as well as shortwave radiation in North China Plain. Annales Geophysicae, 26(7), 2043–2052, doi: 10.5194/angeo-26-2043-2008.CrossRefGoogle Scholar
  26. Yang, K., G. W. Huang, and N. Tamai, 2001: A hybrid model for estimating global solar radiation. Solar Energy, 70(1), 13–22, doi: 10.1016/S0038-092X(00)00121-3.CrossRefGoogle Scholar
  27. Yang, K., T. Koike, and B. S. Ye, 2006: Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agricultural and Forest Meteorology, 137(1–2), 43–55, doi: 10.1016/j.agrformet.2006.02.001.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Hui Liu
    • 1
    • 2
  • Bo Hu
    • 1
    Email author
  • Yuesi Wang
    • 1
  • Guangren Liu
    • 1
  • Liqin Tang
    • 3
  • Dongsheng Ji
    • 1
  • Yongfei Bai
    • 4
  • Weikai Bao
    • 5
  • Xin Chen
    • 6
  • Yunming Chen
    • 7
  • Weixin Ding
    • 8
  • Xiaozeng Han
    • 9
  • Fei He
    • 10
  • Hui Huang
    • 11
  • Zhenying Huang
    • 4
  • Xinrong Li
    • 12
  • Yan Li
    • 14
  • Wenzhao Liu
    • 7
  • Luxiang Lin
    • 13
  • Zhu Ouyang
    • 15
  • Boqiang Qin
    • 16
  • Weijun Shen
    • 17
  • Yanjun Shen
    • 18
  • Hongxin Su
    • 4
  • Changchun Song
    • 9
  • Bo Sun
    • 8
  • Song Sun
    • 19
  • Anzhi Wang
    • 6
  • Genxu Wang
    • 20
  • Huimin Wang
    • 15
  • Silong Wang
    • 6
  • Youshao Wang
    • 11
  • Wenxue Wei
    • 10
  • Ping Xie
    • 21
  • Zongqiang Xie
    • 4
  • Xiaoyuan Yan
    • 8
  • Fanjiang Zeng
    • 14
  • Fawei Zhang
    • 22
  • Yangjian Zhang
    • 15
  • Yiping Zhang
    • 13
  • Chengyi Zhao
    • 14
  • Wenzhi Zhao
    • 12
  • Xueyong Zhao
    • 12
  • Guoyi Zhou
    • 17
  • Bo Zhu
    • 20
  1. 1.State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory for Semi-Arid Climate Change, Ministry of Education, College of Atmospheric SciencesLanzhou UniversityLanzhouChina
  3. 3.College of Atmospheric SciencesChengdu University of Information TechnologyChengduChina
  4. 4.Institute of BotanyChinese Academy of SciencesBeijingChina
  5. 5.Chengdu Institute of BiologyChinese Academy of SciencesBeijingChina
  6. 6.Institute of Applied EcologyChinese Academy of SciencesBeijingChina
  7. 7.Institute of Soil and Water ConservationChinese Academy of SciencesBeijingChina
  8. 8.Institute of Soil ScienceChinese Academy of SciencesBeijingChina
  9. 9.Northeast Institute of Geography and AgroecologyChinese Academy of SciencesBeijingChina
  10. 10.Institute of Subtropical AgricultureChinese Academy of SciencesBeijingChina
  11. 11.South China Sea Institute of OceanologyChinese Academy of SciencesBeijingChina
  12. 12.Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesBeijingChina
  13. 13.Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesBeijingChina
  14. 14.Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesBeijingChina
  15. 15.Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  16. 16.Nanjing Institute of Geography and LimnologyChinese Academy of SciencesBeijingChina
  17. 17.South China Botanical GardenChinese Academy of SciencesBeijingChina
  18. 18.Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
  19. 19.Institute of OceanologyChinese Academy of SciencesBeijingChina
  20. 20.Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesBeijingChina
  21. 21.Institute of HydrobiologyChinese Academy of SciencesBeijingChina
  22. 22.Northwest Institute of Plateau BiologyChinese Academy of SciencesBeijingChina

Personalised recommendations