Advertisement

Advances in Atmospheric Sciences

, Volume 34, Issue 9, pp 1121–1133 | Cite as

Parallel comparison of the 1982/83, 1997/98 and 2015/16 super El Niños and their effects on the extratropical stratosphere

  • Jian Rao
  • Rongcai Ren
Original Paper

Abstract

This study uses multiple sea surface temperature (SST) datasets to perform a parallel comparison of three super El Niños and their effects on the stratosphere. The results show that, different from ordinary El Niños, warm SST anomalies appear earliest in the western tropical Pacific and precede the super El Niño peak by more than 18 months. In the previous winter, relative to the mature phase of El Niño, as a precursor, North Pacific Oscillation-like circulation anomalies are observed. A Pacific–North America (PNA) teleconnection appears in the extratropical troposphere during the mature phase, in spite of the subtle differences between the intensities, as well as the zonal position, of the PNA lobes. Related to the negative rainfall response over the tropical Indian Ocean, the PNA teleconnection in the winter of 1997/98 is the strongest among the three super El Niños. The northern winter stratosphere shows large anomalies in the polar cap temperature and the circumpolar westerly, if the interferences from other factors are linearly filtered from the circulation data. Associated with the positive PNA response in a super El Niño winter, positive polar cap temperature anomalies and circumpolar easterly anomalies, though different in timing, are also observed in the mature winters of the three super El Niños. The stratospheric polar vortex in the next winter relative to the 1982/83 and 1997/98 events is also anomalously weaker and warmer, and the stratospheric circulation conditions remain to be seen in the coming winter following the mature phase of the 2015/16 event.

Key words

super El Niño Pacific–North America (PNA) teleconnection stratosphere proceeding winter 

摘要

本文使用多套海温资料(COBE, ERSST和HadISST), 海洋资料GODAS和大气再分析资料NCEP2, 比较研究了历史上三次超级 El Niño 事件(1982/83, 1997/98和2015/16)的演变特征, 同时关注了超级 El Niño 对北半球冬季平流层的可能影响. 三套海温数据一致表明, 超级 El Niño 事件与普通强度的 El Niño 事件明显不同, 即暖海温异常最早出现在热带西太平洋且超前超级 El Niño 事件达 18 个月之久. 作为超级 El Niño 事件的另一个先兆信号, 即北太平洋涛动(NPO)超前超级 El Niño 事件成熟位相达一年之久, NPO出现在超级 El Niño 成熟位相的前一年冬季. 发展成熟的超级 El Niño有利于热带外太平洋–北美遥相关(PNA)正位相维持. 值得注意的是, 三次超级 El Niño 成熟位相期间的 PNA 强度和纬向位置不尽相同. 1997/98年冬季PNA强度明显强于 1982/83和2015/16年, 这与1997/98年冬季印度洋降水明显偏少有关. 从再分析资料中滤除影响热带外平流层年际变化的 QBO, 热带印度洋热力异常和太阳循环等强迫因子后, 我们依然发现超级 El Niño 同年冬季平流层极冠区明显偏暖, 且绕极西风明显减弱. 三次事件的共同点在于, 伴随热带外 PNA响应, 热带外上传至平流层的行星波波动明显增多; 不同之处在于极涡异常偏弱偏暖的月份各不相同, 即 1982/83 和 2015/16 极涡偏暖时间明显偏向晚冬至春季. 异常偏暖偏弱的平流层极涡不仅发生在超级 El Niño 事件成熟位相冬季(尤其是晚冬), 而且还出现在 1982/83 和 1997/98 两次超级 El Niño 的次年冬季. 2015/16 超级 El Niño 是否也会对滞后一年的冬季平流层产生显著影响, 这有待进一步研究.

关键词

超级El Niño 太平洋–北美遥相关 平流层 次年冬季 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was jointly supported by the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology (Grant No. 2016r060), the National Key Research and Development Program (Grant No. 2016YFA0602104), the National Natural Science Foundation of China (Grant Nos. 41575041, 41430533 and 91437105), the Chinese Academy of Sciences (Grant No. XDA11010402), and the China Meteorological Administration Special Public Welfare Research Fund (Grant No. GYHY201406001). We acknowledge the JMA, NOAA, and UK Met Office for providing the COBE, ERSST, and HadISST datasets. The NCEP–DOE is also acknowledged. GODAS data were provided by the NOAA/OAR/ESRL PSD and obtained from their website at http://www.esrl.noaa.gov/psd/.

References

  1. Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Climate, 15, 2205–2231, doi: 10.1175/1520- 0442(2002)015<2205:TABTIO>2.0.CO;2.CrossRefGoogle Scholar
  2. Annamalai, H., H. Okajima, and M. Watanabe, 2007: Possible impact of the Indian Ocean SST on the northern hemisphere circulation during El Ñi˜o. J. Climate, 20, 3164–3189, doi: 10.1175/JCLI4156.1.CrossRefGoogle Scholar
  3. Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112(C11), C11007, doi: 10.1029/2006JC 003798.CrossRefGoogle Scholar
  4. Barsugli, J. J., and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo- Pacific basin. J. Climate, 15, 3427–3442, doi: 10.1175/1520- 0442(2002)015<3427:GASTTS>2.0.CO;2.CrossRefGoogle Scholar
  5. Cai, M., Y. Y. Yu, Y. Deng, H. M. van den Dool, R. C. Ren, S. Saha, X. R. Wu, and J. Huang, 2016: Feeling the pulse of the stratosphere: An emerging opportunity for predicting continental-scale cold-air outbreaks 1 month in advance. Bull. Amer. Meteor. Soc., 97, 1475–1489, doi: 10.1175/BAMS-D-14-00287.1.CrossRefGoogle Scholar
  6. Camp, C. D., and K. K. Tung, 2007: The influence of the solar cycle and QBO on the late-winter stratospheric polar vortex. J. Atmos. Sci., 64, 1267–1283, doi: 10.1175/JAS3883.1.CrossRefGoogle Scholar
  7. Ding, R. Q., and J. P. Li, 2012: Influences of ENSO teleconnection on the persistence of sea surface temperature in the tropical Indian Ocean. J. Climate, 25, 8177–8195, doi: 10.1175/JCLID-11-00739.1.CrossRefGoogle Scholar
  8. Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J. Geophys. Res., 102(C1), 929–945, doi: 10.1029/96JC03296.CrossRefGoogle Scholar
  9. Farrara, J. D., C. R. Mechoso, and A.W. Robertson, 2000: Ensembles of AGCM two-tier predictions and simulations of the circulation anomalies during winter 1997-98. Mon. Wea. Rev., 128, 3589–3604, doi: 10.1175/1520-0493(2000)128<3589:EOATTP>2.0.CO;2.CrossRefGoogle Scholar
  10. Garfinkel, C. I., and D. L. Hartmann, 2007: Effects of the El Niño–Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere. J. Geophys. Res., 112(D19), D19112, doi: 10.1029/2007JD008481.Google Scholar
  11. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, doi: 10.1002/qj.49710644905.CrossRefGoogle Scholar
  12. Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 1769–1786, doi: 10.1175/1520-0442(1997)010<1769: ENOLNA>2.0.CO;2.CrossRefGoogle Scholar
  13. Holton, J. R., and H. C. Tan, 1980: The Influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200–2208, doi: 10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.CrossRefGoogle Scholar
  14. Horii, T., and K. Hanawa, 2004: A relationship between timing of El Niño onset and subsequent evolution. Geophys. Res. Lett., 31, L06304, doi: 10.1029/2003GL019239.CrossRefGoogle Scholar
  15. Hu, J. G., R. C. Ren, H. M. Xu., and S. Y. Yang, 2015: Seasonal timing of stratospheric final warming associated with the intensity of stratospheric sudden warming in preceding winter. Science China Earth Sciences, 58, 615–627, doi: 10.1007/s11430-014-5008-z.CrossRefGoogle Scholar
  16. Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol., 25, 865–879, doi: 10.1002/joc.1169.CrossRefGoogle Scholar
  17. Jin, F. F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307–319, doi: 10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.CrossRefGoogle Scholar
  18. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  19. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643, doi: 10.1175/BAMS-83-11-1631.CrossRefGoogle Scholar
  20. Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615–632, doi: 10.1175/2008JCLI2309.1.CrossRefGoogle Scholar
  21. Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932, doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.CrossRefGoogle Scholar
  22. Kodera, K., and Y. Kuroda, 2002: Dynamical response to the solar cycle. J. Geophys. Res., 107(D24), ACL 5-1–ACL 5-12, doi: 10.1029/2002JD002224.Google Scholar
  23. Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515, doi: 10.1175/2008JCLI2624.1.CrossRefGoogle Scholar
  24. Kumar, A., and M. P. Hoerling, 1998: Specification of regional sea surface temperatures in atmospheric general circulation model simulations. J. Geophys. Res., 103(D8), 8901–8907, doi: 10.1029/98JD00427.CrossRefGoogle Scholar
  25. Matthes, K., Y. Kuroda, K. Kodera, and U. Langematz, 2006: Transfer of the solar signal from the stratosphere to the troposphere: Northern winter. J. Geophys. Res., 111(D6), D06108, doi: 10.1029/2005JD006283.CrossRefGoogle Scholar
  26. Newman, M., and P. D. Sardeshmukh, 1998: The impact of the annual cycle on the North Pacific/North American response to remote low-frequency forcing. J. Atmos. Sci., 55, 1336–1353, doi: 10.1175/1520-0469(1998)055<1336:TIOTAC>2.0.CO;2.CrossRefGoogle Scholar
  27. Nicholson, S. E., 1997: Correction: An analysis of the ENSO signal in the tropical Atlantic and western Indian Oceans. Int. J. Climatol., 17, 1008, doi: 10.1002/(SICI)1097-0088(199707) 17:9<1008::AID-JOC117>3.0.CO;2-9.CrossRefGoogle Scholar
  28. Osprey, S. M., N. Butchart, J. R. Knight, A. A. Scaife, K. Hamilton, J. A. Anstey, V. Schenzinger, and C. X. Zhang, 2016: An unexpected disruption of the atmospheric quasi-biennial oscillation. Science, 353, 1425–1427, doi: 10.1126/science.aah4156.CrossRefGoogle Scholar
  29. Rao, J., and R.-C. Ren, 2014: Statistical characteristics of ENSO events in CMIP5 models. Atmos. Oceanic Sci. Lett., 7, 546–552, doi: 10.3878/AOSL20140055.CrossRefGoogle Scholar
  30. Rao, J., and R. C. Ren, 2016a: A decomposition of ENSO’s impacts on the northern winter stratosphere: Competing effect of SST forcing in the tropical Indian Ocean. Climate Dyn., 46, 3689–3707, doi: 10.1007/s00382-015-2797-5.CrossRefGoogle Scholar
  31. Rao, J., and R. C. Ren, 2016b: Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 1.Observations. J. Geophys. Res., 121, 9000–9016, doi: 10.1002/2015JD024520.CrossRefGoogle Scholar
  32. Rao, J., and R. C. Ren, 2016c: Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 2.Model study with WACCM. J. Geophys. Res., 121, 9017–9032, doi: 10.1002/2015JD024521.Google Scholar
  33. Rao, J., R. C. Ren, and Y. Yang, 2015: Parallel comparison of the northern winter stratospheric circulation in reanalysis and in CMIP5 models. Adv. Atmos. Sci., 32, 952–966, doi: 10.1007/s00376-014-4192-2.CrossRefGoogle Scholar
  34. Rasmusson, E. M., X. L. Wang, and C. F. Ropelewski, 1990: The biennial component of ENSO variability. J. Mar. Syst., 1, 71–96, doi: 10.1016/0924-7963(90)90153-2.CrossRefGoogle Scholar
  35. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), 4407, doi: 10.1029/2002 JD002670.CrossRefGoogle Scholar
  36. Ren, R. C., and M. Cai, 2006: Polar vortex oscillation viewed in an isentropic potential vorticity coordinate. Adv. Atmos. Sci., 23, 884–900, doi: 10.1007/s00376-006-0884-6.CrossRefGoogle Scholar
  37. Ren, R. C., and J. G. Hu, 2014: An emerging precursor signal in the stratosphere in recent decades for the Indian summer monsoon onset. Geophys. Res. Lett., 41, 7391–7396, doi: 10.1002/2014GL061633.CrossRefGoogle Scholar
  38. Ren, R. C., M. Cai, C. Y. Xiang, and G. X. Wu, 2012: Observational evidence of the delayed response of stratospheric polar vortex variability to ENSO SST anomalies. Climate Dyn., 38, 1345–1358, doi: 10.1007/s00382-011-1137-7.CrossRefGoogle Scholar
  39. Ren, R. C., J. Rao, G. X. Wu, and M. Cai, 2017: Tracking the delayed response of the northern winter stratosphere to ENSO using multi reanalyses and model simulations. Climate Dyn., 48, 2859–2879, doi: 10.1007/s00382-016-3238-9.CrossRefGoogle Scholar
  40. Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19, 3483–3517, doi: 10.1175/JCLI3812.1.CrossRefGoogle Scholar
  41. Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Climate, 16, 1495–1510, doi: 10.1175/1520-0442-16.10.1495.CrossRefGoogle Scholar
  42. Spencer, H., J. M. Slingo, and M. K. Davey, 2004: Seasonal predictability of ENSO teleconnections: The role of the remote ocean response. Climate Dyn., 22, 511–526, doi: 10.1007/s00382-004-0393-1.CrossRefGoogle Scholar
  43. Stephens, D. J., M. J. Meuleners, H. van Loon, M. H. Lamond, and N. P. Telcik, 2007: Differences in atmospheric circulation between the development of weak and strong warm events in the Southern Oscillation. J. Climate, 20, 2191–2209, doi: 10.1175/JCLI4131.1.CrossRefGoogle Scholar
  44. Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 3923–3926, doi: 10.1029/2001GL 013435.CrossRefGoogle Scholar
  45. Wallace, J. M., R. L. Panetta, and J. Estberg, 1993: Representation of the equatorial stratospheric Quasi-Biennial Oscillation in EOF phase space. J. Atmos. Sci., 50, 1751–1762, doi: 10.1175/1520-0469(1993)050<1751:ROTESQ>2.0.CO;2.CrossRefGoogle Scholar
  46. Wei, K., W. Chen, and R. H. Huang, 2007: Association of tropical Pacific sea surface temperatures with the stratospheric Holton-Tan Oscillation in the Northern Hemisphere winter. Geophys. Res. Lett., 34, L16814, doi: 10.1029/2007GL 030478.Google Scholar
  47. Wolter, K., and M. S. Timlin, 1998: Measuring the strength of ENSO events: How does 1997/98 rank?. Weather, 53, 315–324, doi: 0.1002/j.1477-8696.1998.tb06408.x.CrossRefGoogle Scholar
  48. Xie, F., J. Li., W. Tian, J. Feng, and Y. Huo, 2012: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos. Chem. Phys. Discuss., 12, 5259–5273, doi: 10.5194/acp-12-5259-2012.CrossRefGoogle Scholar
  49. Xu, J. J., and J. C. L. Chan, 2001: The role of the Asian–Australian monsoon system in the onset time of El Niño events. J. Climate, 14, 418–433, doi: 10.1175/1520-0442(2001)014 <0418:TROTAA2.0.CO;2.CrossRefGoogle Scholar
  50. Yu, Y. Y., R. C. Ren, J. G. Hu, and G. X. Wu, 2014: A mass budget analysis on the interannual variability of the polar surface pressure in the winter season. J. Atmos. Sci., 71, 3539–3553, doi: 10.1175/JAS-D-13-0365.1.CrossRefGoogle Scholar
  51. Yu, Y. Y., R. C. Ren, and M. Cai, 2015: Dynamic linkage between cold air outbreaks and intensity variations of the meridional mass circulation. J. Atmos. Sci., 72, 3214–3232, doi: 10.1175/JAS-D-14-0390.1.CrossRefGoogle Scholar
  52. Zhai, P. M., and Coauthors, 2016: The strong El Niño of 2015/16 and its dominant impacts on global and China’s climate. Journal of Meteorological Research, 30, 283–297, doi: 10.1007/s13351-016-6101-3.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)Nanjing University of Information Science and TechnologyNanjingChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations