Advances in Atmospheric Sciences

, Volume 34, Issue 6, pp 757–770 | Cite as

A high-resolution simulation of Supertyphoon Rammasun (2014)—Part I: Model verification and surface energetics analysis

  • Xinghai Zhang
  • Yihong Duan
  • Yuqing Wang
  • Na Wei
  • Hao Hu
Original Paper


A 72-h high-resolution simulation of Supertyphoon Rammasun (2014) is performed using the Advanced Research Weather Research and Forecasting model. The model covers an initial 18-h spin-up, the 36-h rapid intensification (RI) period in the northern South China Sea, and the 18-h period of weakening after landfall. The results show that the model reproduces the track, intensity, structure of the storm, and environmental circulations reasonably well. Analysis of the surface energetics under the storm indicates that the storm’s intensification is closely related to the net energy gain rate (ε g), defined as the difference between the energy production (P D) due to surface entropy flux and the energy dissipation (D S) due to surface friction near the radius of maximum wind (RMW). Before and during the RI stage, the ε g is high, indicating sufficient energy supply for the storm to intensify. However, the ε g decreases rapidly as the storm quickly intensifies, because the DS increases more rapidly than the P D near the RMW. By the time the storm reaches its peak intensity, the D S is about 20% larger than the P D near the RMW, leading to a local energetics deficit under the eyewall. During the mature stage, the P D and D S can reach a balance within a radius of 86 km from the storm center (about 2.3 times the RMW). This implies that the local P D under the eyewall is not large enough to balance the D S, and the radially inward energy transport from outside the eyewall must play an important role in maintaining the storm’s intensity, as well as its intensification.

Key words

Rammasun (2014) high-resolution simulation energetics analysis rapid intensification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by the National Basic Research and Development Project (973 program) of China (Grant No. 2015CB452805) and the National Natural Science Foundation of China (Grant No. 41375068). Yuqing WANG was partly supported by the National Science Foundation (Grant No. AGS-1326524).


  1. Andreas, E. L., 2011: Fallacies of the enthalpy transfer coefficient over the ocean in high winds. J. Atmos. Sci., 68, 1435–1445.CrossRefGoogle Scholar
  2. Black, P. G., and Coauthors, 2007: Air-sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air-sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357–374.CrossRefGoogle Scholar
  3. Bougeault, P., P. Lacarrere, 1989: Parameterization of orographyinduced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 1872–1890.CrossRefGoogle Scholar
  4. Braun, S. A., and W. K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941–3961.CrossRefGoogle Scholar
  5. Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 1125–1143.CrossRefGoogle Scholar
  6. Bryan, G. H., and R. Rotunno, 2009a: The influence of nearsurface, high-entropy air in hurricane eyes on maximum hurricane intensity. J. Atmos. Sci., 66, 148–158.CrossRefGoogle Scholar
  7. Bryan, G. H., and R. Rotunno, 2009b: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 1770–1789.CrossRefGoogle Scholar
  8. Cha, D.-H., and Y. Q. Wang, 2013: A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF model. Mon. Wea. Rev., 141, 964–986.CrossRefGoogle Scholar
  9. Chen, H., D.-L. Zhang, J. Carton, and R. Atlas, 2011: On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Wea. Forecasting, 26, 885–901.Google Scholar
  10. Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531–550.CrossRefGoogle Scholar
  11. Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 1835–1856.CrossRefGoogle Scholar
  12. Davis, C., and L. F. Bosart, 2002: Numerical simulations of the genesis of Hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon. Wea. Rev., 130, 1100–1124.Google Scholar
  13. Davis, C., W. Wang, J. Dudhia, and R. Torn, 2010: Does increased horizontal resolution improve hurricane wind forecasts? Wea. Forecasting, 25, 1826–1841.CrossRefGoogle Scholar
  14. Deng, L., Y.-H. Duan, W.-H. Gao, and X.-H. Zhang, 2016: Numerical simulation and comparison of cloud microphysical features of super typhoon Rammasun (2014). Acta Meteorological Sinica, 74, 697–714 (in Chinese).Google Scholar
  15. Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306.CrossRefGoogle Scholar
  16. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale twodimensional model. J. Atmos. Sci., 46, 3077–3107.CrossRefGoogle Scholar
  17. Elsberry, R. L., L. S. Chen, J. Davidson, R. Rogers, Y. Q. Wang, and L. G. Wu, 2013: Advances in understanding and forecasting rapidly changing phenomena in tropical cyclones. Tropical Cyclone Research and Review, 2, 1–12.Google Scholar
  18. Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605.Google Scholar
  19. Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483–485.CrossRefGoogle Scholar
  20. Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143–1155.CrossRefGoogle Scholar
  21. Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969–3976.CrossRefGoogle Scholar
  22. Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 1014–1026.CrossRefGoogle Scholar
  23. Emanuel, K., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 2236–2249.Google Scholar
  24. Frisius, T., and D. Schönemann, 2012: An extended model for the potential intensity of tropical cyclones. J. Atmos. Sci., 69, 641–661.CrossRefGoogle Scholar
  25. Grasso, L., D. T. Lindsey, K.-S. S. Lim, A. Clark, D. Bikos, and S. R. Dembek, 2014: Evaluation of and suggested improvements to the WSM6 microphysics in WRF-ARW using synthetic and observed GOES-13 imagery. Mon. Wea. Rev., 142, 3635–3650.CrossRefGoogle Scholar
  26. Gu, J.-F., Z.-M. Tan, and X. Qiu, 2015: Effects of vertical wind shear on inner-core thermodynamics of an idealized simulated tropical cyclone. J. Atmos. Sci., 72, 511–530.CrossRefGoogle Scholar
  27. Gu, J.-F., Z.-M. Tan, and X. Qiu, 2016: Quadrant-dependent evolution of low-level tangential wind of a tropical cyclone in the shear flow. J. Atmos. Sci., 73, 1159–1177.CrossRefGoogle Scholar
  28. Hasler, A. F., K. Palaniappan, C. Kambhammetu, P. Black, E. Uhlhorn, and D. Chesters, 1998: High-resolution wind fields within the inner core and eye of a mature tropical cyclone from GOES 1-min images. Bull. Amer. Meteor. Soc., 79, 2483–2496.CrossRefGoogle Scholar
  29. Hazelton, A. T., R. Rogers, and R. E. Hart, 2015: Shear-relative asymmetries in tropical cyclone eyewall slope. Mon. Wea. Rev., 143, 883–903.CrossRefGoogle Scholar
  30. Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129–151.Google Scholar
  31. Houze, R. A., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 1235–1239.CrossRefGoogle Scholar
  32. Houze, R. A., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293–344.CrossRefGoogle Scholar
  33. Itano, T., and M. Hosoya, 2013: Spectral analyses of the polygonal eye of Typhoon Sinlaku. Mon. Wea. Rev., 141, 987–996.CrossRefGoogle Scholar
  34. Jin, Y., and Coauthors, 2014: The impact of ice phase cloud parameterizations on tropical cyclone prediction. Mon. Wea. Rev., 142, 606–625.CrossRefGoogle Scholar
  35. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181.CrossRefGoogle Scholar
  36. Li, L. F., W. H. Li, and J. M. Jin, 2014: Improvements in WRF simulation skills of southeastern United States summer rainfall: Physical parameterization and horizontal resolution. Climate Dyn., 43, 2077–2091.CrossRefGoogle Scholar
  37. Li, Q. Q., and Y. Q. Wang, 2012: Formation and quasi-periodic behavior of outer spiral rainbands in a numerically simulated tropical cyclone. J. Atmos. Sci., 69, 997–1020.CrossRefGoogle Scholar
  38. Li, Q. Q., Y. Q. Wang, and Y. H. Duan, 2015: Impacts of evaporation of rainwater on tropical cyclone structure and intensity— A revisit. J. Atmos. Sci., 72, 1323–1345.CrossRefGoogle Scholar
  39. Li, X. L., and Z. X. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136, 4819–4838.CrossRefGoogle Scholar
  40. Liu, Y. B., D.-L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 3073–3093.Google Scholar
  41. Liu, Y. D., D.-L. Zhang, and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 2597–2616.Google Scholar
  42. Marks, F. D., and L. K. Shay, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305–323.CrossRefGoogle Scholar
  43. Montgomery, M. T., R. K. Smith, and S. V. Nguyen, 2010: Sensitivity of tropical-cyclone models to the surface drag coefficient. Quart. J. Roy. Meteor. Soc., 136, 1945–1953.CrossRefGoogle Scholar
  44. Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3–40.CrossRefGoogle Scholar
  45. Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857–861.CrossRefGoogle Scholar
  46. Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 2349–2371.CrossRefGoogle Scholar
  47. Persing, J., and M. T. Montgomery, 2005: Is environmental CAPE important in the determination of maximum possible hurricane intensity? J. Atmos. Sci., 62, 542–550.CrossRefGoogle Scholar
  48. Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279–283.CrossRefGoogle Scholar
  49. Qin, N. N., D.-L. Zhang, and Y. Li, 2016: A statistical analysis of steady eyewall sizes associated with rapidly intensifying hurricanes. Wea. Forecasting, 31, 737–742.CrossRefGoogle Scholar
  50. Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 3–22.CrossRefGoogle Scholar
  51. Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Q. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625.CrossRefGoogle Scholar
  52. Rotunno, R., and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542–561.Google Scholar
  53. Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687–1697.CrossRefGoogle Scholar
  54. Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 1197–1223.CrossRefGoogle Scholar
  55. Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475+STR, 113 pp.Google Scholar
  56. Smith, R. K., M. T. Montgomery, and H. Y. Zhu, 2005: Buoyancy in tropical cyclones and other rapidly rotating atmospheric vortices. Dyn. Atmos. Oceans, 40, 189–208.CrossRefGoogle Scholar
  57. Smith, R. K., M. T. Montgomery, and S. V. Nguyen, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 1321–1335.CrossRefGoogle Scholar
  58. Stern, D. P., J. R. Brisbois, and D. S. Nolan, 2014: An expanded dataset of hurricane eyewall sizes and slopes. J. Atmos. Sci., 71, 2747–2762.CrossRefGoogle Scholar
  59. Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Q. Zhang, 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72, 1283–1306.CrossRefGoogle Scholar
  60. Sun, Y., L. Yi, Z. Zhong, and Y. Ha, 2014: Performance of a new convective parameterization scheme on model convergence in simulations of a tropical cyclone at grey-zone resolutions. J. Atmos. Sci., 71, 2078–2088.CrossRefGoogle Scholar
  61. Wang, H., Y. Q. Wang, and H.-M. Xu, 2013: Improving simulation of a tropical cyclone using dynamical initialization and large-scale spectral nudging: A case study of Typhoon Megi (2010). Acta Meteorologica Sinica, 27, 455–475.CrossRefGoogle Scholar
  62. Wang, H., and Y. Q. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 29–48.Google Scholar
  63. Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257–278.CrossRefGoogle Scholar
  64. Wang, Y. Q., 2002: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130, 3022–3036.Google Scholar
  65. Wang, Y. Q., 2008: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65, 1158–1181.CrossRefGoogle Scholar
  66. Wang, Y. Q., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250–1273.CrossRefGoogle Scholar
  67. Wang, Y. Q., 2012: Recent research progress on tropical cyclone structure and intensity. Tropical Cyclone Research and Review, 1, 254–275.Google Scholar
  68. Wang, Y. Q., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 3313–3332.CrossRefGoogle Scholar
  69. Wang, Y. Q., and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67, 97–116.CrossRefGoogle Scholar
  70. Wang, Y. Q., and J.-Y. Heng, 2016: Contribution of eye excess energy to the intensification rate of tropical cyclones: A numerical study. Journal of Advances in Modeling Earth Systems, doi: 10.1002/2016MS000709. (in Press)Google Scholar
  71. Weng, F. Z., 2007: Advances in radiative transfer modeling in support of satellite data assimilation. J. Atmos. Sci., 64, 3799–3807.CrossRefGoogle Scholar
  72. Wu, L. G., S. A. Braun, J. Halverson, and G. Heymsfield, 2006: A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63, 65–86.Google Scholar
  73. Xu, J., and Y. Q. Wang, 2010: Sensitivity of tropical cyclone innercore size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 1831–1852.CrossRefGoogle Scholar
  74. Yau, M. K., Y. B. Liu, D.-L. Zhang, and Y. S. Chen, 2004: A multiscale numerical study of Hurricane Andrew (1992). Part VI: Small-scale inner-core structures and wind streaks. Mon. Wea. Rev., 132, 1410–1433.Google Scholar
  75. Zeng, Z. H., Y. Q. Wang, Y. H. Duan, L. S. Chen, and Z. Q. Gao, 2010: On sea surface roughness parameterization and its effect on tropical cyclone structure and intensity. Adv. Atmos. Sci., 27, 337–355, doi: 10.1007/s00376-009-8209-1.CrossRefGoogle Scholar
  76. Zhang, D.-L., Y. B. Liu, and M. K. Yau, 2000: A multiscale numerical study of Hurricane Andrew (1992). Part III: Dynamically induced vertical motion. Mon. Wea. Rev., 128, 3772–3788.Google Scholar
  77. Zhang, D.-L., Y. B. Liu, and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129, 92–107.Google Scholar
  78. Zhang, D.-L., Y. B. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 2745–2763.Google Scholar
  79. Zhang, D.-L., L. Zhu, X.-J Zhang, and V. Tallapragada, 2015: Sensitivity of idealized hurricane intensity and structures under varying background flows and initial vortex intensities to different vertical resolutions in HWRF. Mon. Wea. Rev., 143, 914–932.CrossRefGoogle Scholar
  80. Zhu, T., and D.-L. Zhang, 2006: Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63, 109–126.Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xinghai Zhang
    • 1
    • 2
  • Yihong Duan
    • 1
  • Yuqing Wang
    • 1
    • 3
  • Na Wei
    • 1
  • Hao Hu
    • 1
  1. 1.State Key Laboratory of Severe Weather in Chinese Academy of Meteorological SciencesChina Meteorological AdministrationBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.International Pacific Research Center and Department of Atmospheric Sciences, School of Ocean and Earth Science and TechnologyUniversity of Hawaii at MānoaHonolulu, HawaiiUSA

Personalised recommendations