Advances in Atmospheric Sciences

, Volume 34, Issue 9, pp 1035–1046 | Cite as

Evaluating common land model energy fluxes using FLUXNET data

  • Xiangxiang Zhang
  • Yongjiu DaiEmail author
  • Hongzhi Cui
  • Robert E. Dickinson
  • Siguang Zhu
  • Nan Wei
  • Binyan Yan
  • Hua Yuan
  • Wei Shangguan
  • Lili Wang
  • Wenting Fu
Original Paper


Given the crucial role of land surface processes in global and regional climates, there is a pressing need to test and verify the performance of land surface models via comparisons to observations. In this study, the eddy covariance measurements from 20 FLUXNET sites spanning more than 100 site-years were utilized to evaluate the performance of the Common Land Model (CoLM) over different vegetation types in various climate zones. A decomposition method was employed to separate both the observed and simulated energy fluxes, i.e., the sensible heat flux, latent heat flux, net radiation, and ground heat flux, at three timescales ranging from stepwise (30 min) to monthly. A comparison between the simulations and observations indicated that CoLM produced satisfactory simulations of all four energy fluxes, although the different indexes did not exhibit consistent results among the different fluxes. A strong agreement between the simulations and observations was found for the seasonal cycles at the 20 sites, whereas CoLM underestimated the latent heat flux at the sites with distinct dry and wet seasons, which might be associated with its weakness in simulating soil water during the dry season. CoLM cannot explicitly simulate the midday depression of leaf gas exchange, which may explain why CoLM also has a maximum diurnal bias at noon in the summer. Of the eight selected vegetation types analyzed, CoLM performs best for evergreen broadleaf forests and worst for croplands and wetlands.

Key words

model evaluation Common Land Model FLUXNET 

摘 要

陆面模式描述陆地表面与大气之间物质, 能量和动量交换过程, 因其可以为大气环流模式提供准确的下垫面条件而对全球气候变化研究非常重要. 随着人们对天气预报和气候预测精度的需求越来越高, 用观测资料验证和改进陆面模式也逐渐成为提高模式模拟能力的一种重要手段. 本研究利用覆盖不同气候区不同植被类型的 20 个 FLUXNET 站点观测数据检验通用陆面模式(Common Land Model, CoLM)的能量平衡模拟情况. 在对比分析观测和模拟的感热, 潜热, 净辐射和地表热通量时, 采用分解方法将每个观测值或模拟值分解为月平均, 日平均残差和逐时残差三个部分. 综合相关系数(R), 均方根误差(RMSE)和标准化误差(Nbias)对不同时间尺度和不同植被类型的能量通量分析, 结果发现 CoLM 能够很好地模拟 4 个地表能量通量, 其中模拟净辐射最好, 模拟潜热通量好于感热通量; 模式能够很好地模拟能量通量的季节变化, 但在有明显干湿季的站点低估潜热通量, 这可能与模式对干季土壤水的模拟存在缺陷有关; CoLM 在夏季中午产生较大模拟误差, 这很可能是因为 CoLM 不能准确模拟光合午睡现象; 就不同的植被类型而言, CoLM 在所选的 8 种植被类型中的常绿针叶林表现最好.


模式评估 通用陆面模式 FLUXNET 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the R&D Special Fund for Nonprofit Industry (Meteorology) (Grant Nos. GYHY200706025, GYHY201206013 and GYHY201306066). We thank the two reviewers for their time and effort to thoroughly review the manuscript. Their suggestions greatly improved the paper.


  1. Aitken, A. P., 1973: Assessing systematic errors in rainfall-runoff models. J. Hydrol., 20, 121–136, doi: 10.1016/0022-1694(73) 90035-8.CrossRefGoogle Scholar
  2. Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 2415–2434, doi: 10.1175/1520-0477 (2001)082〈2415:FANTTS〉2.3.CO;2.CrossRefGoogle Scholar
  3. Baldocchi, D., and Coauthors, 2016: Role of flux networks in benchmarking land atmosphere models. 2016 International Land Model Benchmarking (ILAMB) Workshop, Washington, DC, ILAMB.Google Scholar
  4. Best, M., and Coauthors, 2015: The plumbing of land surface models: Benchmarking model performance. Journal of Hydrometeorology, 16, 1425–1442, doi: 10.1175/JHM-D-14-0158.1.CrossRefGoogle Scholar
  5. Blyth, E., J. Gash, A. Lloyd, M. Pryor, G. P. Weedon, and J. Shuttleworth, 2010: Evaluating the JULES land surface model energy fluxes using FLUXNET data. Journal of Hydrometeorology, 11, 509–519, doi: 10.1175/2009JHM1183.1.CrossRefGoogle Scholar
  6. Bonan, G. B., 1996: A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User’s Guide. NCAR Tech. Note NCAR/TN-417+STR, 150 pp.Google Scholar
  7. Bonan, G. B., 2015: Ecological Climatology: Concepts and Applications. 3rd ed., Cambridge University Press.Google Scholar
  8. Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. B. Zeng, Y. J. Dai, R. E. Dickinson, and Z. L. Yang, 2002: The land surface climatology of the community land model coupled to the NCAR community climate model. J. Climate, 15, 3123–3149, doi: 10.1175/1520-0442(2002)015〈3123:TLSCOT〉2.0.CO;2.CrossRefGoogle Scholar
  9. Burgess, S. S. O., M. A. Adams, N. C. Turner, and C. K. Ong, 1998: The redistribution of soil water by tree root systems. Oecologia, 115, 306–311, doi: 10.1007/s004420050521.CrossRefGoogle Scholar
  10. Caldwell, M. M., T. E. Dawson, and J. H. Richards, 1998: Hydraulic lift: Consequences of water efflux from the roots of plants. Oecologia, 113, 151–161, doi: 10.1007/s004420050363.CrossRefGoogle Scholar
  11. Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54, 107–136, doi: 10.1016/0168-1923(91)90002- 8.CrossRefGoogle Scholar
  12. Dai, Y. J., and Q. C. Zeng, 1997: A land surface model (IAP94) for climate studies part I: Formulation and validation in offline experiments. Adv. Atmos. Sci., 14, 433–460, doi: 10.1007/s00376-997-0063-4.CrossRefGoogle Scholar
  13. Dai, Y. J., and Coauthors, 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1023, doi: 10.1175/BAMS-84-8-1013.CrossRefGoogle Scholar
  14. Dai, Y. J., R. E. Dickinson, and Y.-P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17, 2281–2299, doi: 10.1175/1520- 0442(2004)017〈2281:ATMFCT〉2.0.CO;2.CrossRefGoogle Scholar
  15. Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy, and M. F. Wilson, 1986: Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-275-+STR, doi: 10.5065/D6668B58.Google Scholar
  16. Groenendijk, M., and Coauthors, 2011: Assessing parameter variability in a photosynthesis model within and between plant functional types using global FLUXNET eddy covariance data. Agricultural and Forest Meteorology, 151, 22–38, doi: 10.1016/j.agrformet.2010.08.013.CrossRefGoogle Scholar
  17. Henderson-Sellers, A., Z. L. Yang, and R. E. Dickinson, 1993: The project for intercomparison of land -surface parameterization schemes. Bull. Amer. Meteor. Soc., 74, 1335–1349, doi: 10.1175/1520-0477(1993)074〈1335:TPFIOL〉2.0.CO;2CrossRefGoogle Scholar
  18. Huang, C. L., X. Li, and J. Gu, 2008: Estimation of regional soil moisture by assimilating multi-sensor passive microwave remote sensing observations based on ensemble Kalman filter. Proc. IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, IEEE, III-1052–III-1055, doi: 10.1109/IGARSS.2008.4779534.Google Scholar
  19. James, L. D., and S. J. Burges, 1982: Selection, calibration, and testing of hydrologic models. Hydrologic Modelling of Small Watersheds, C. T. Haan, Ed., ASAE Michigan, 435–472.Google Scholar
  20. Ji, D., and Coauthors, 2014: Description and basic evaluation of BNU-ESM version 1.Geosci. Model Dev. Discuss., 7, 1601–1647, doi: 10.5194/gmdd-7-1601-2014.CrossRefGoogle Scholar
  21. Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951–954, doi: 10.1038/nature09396.CrossRefGoogle Scholar
  22. Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World map of the Köppen-Geiger climate classification updated. Meteor. Z., 15, 259–263, doi: 10.1127/0941-2948/2006/0130.CrossRefGoogle Scholar
  23. Lee, J.-E., R. S. Oliveira, T. E. Dawson, and I. Fung, 2005: Root functioning modifies seasonal climate. Proceedings of the National Academy of Sciences of the United States of America, 102, 17576–17581, doi: 10.1073/pnas.0508785102.CrossRefGoogle Scholar
  24. Li, Y., X. Liu, and W. P. Li, 2012: Numerical simulation of land surface process at different underlying surfaces in Tibetan Plateau. Plateau Meteorology, 31, 581–591. (in Chinese)Google Scholar
  25. Luo, Y. Q., and Coauthors, 2012: A framework for benchmarking land models. Biogeosciences, 9, 3857–3874, doi: 10.5194/bg- 9-3857-2012.CrossRefGoogle Scholar
  26. Ma, L. L., L. L. Tang, and Z. L. Li, 2006: Simulation of land ETs of China with CoLM. Proc. SPIE 6200, Remote Sensing of the Environment: 15th National Symposium on Remote Sensing of China, Guiyan City, China, SPIE, 62000N, doi: 10.1117/12.681768.Google Scholar
  27. Meng, C. L., Z. L. Li, X. Zhan, J. C. Shi, and C. Y. Liu, 2009: Land surface temperature data assimilation and its impact on evapotranspiration estimates from the Common Land Model. Water Resour. Res., 45, W02421, doi: 10.1029/2008WR006971.CrossRefGoogle Scholar
  28. Neumann, R. B., and Z. G. Cardon, 2012: The magnitude of hydraulic redistribution by plant roots: A review and synthesis of empirical and modeling studies. New Phytologist, 194, 337–352, doi: 10.1111/j.1469-8137.2012.04088.x.CrossRefGoogle Scholar
  29. Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113(G1), G01021, doi: 10.1029/2007 JG000563.CrossRefGoogle Scholar
  30. Oleson, K. W., and Coauthors, 2013: Technical Description of Version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp, doi: 10.5065/D6RR1W7M.Google Scholar
  31. Oliveira, R. S., T. E. Dawson, S. S. O. Burgess, and D. C. Nepstad, 2005: Hydraulic redistribution in three Amazonian trees. Oecologia, 145, 354–363, doi: 10.1007/s00442-005-0108-2.CrossRefGoogle Scholar
  32. Pessarakli, M., 2005: Hand book of Photosynthesis. 2nd ed., CRC Press.Google Scholar
  33. Prieto, I., C. Armas, and F. I. Pugnaire, 2012: Water release through plant roots: New insights into its consequences at the plant and ecosystem level. New Phytologist, 193, 830–841, doi: 10.1111/j.1469-8137.2011.04039.x.CrossRefGoogle Scholar
  34. Quijano, J. C., and P. Kumar, 2015: Numerical simulations of hydraulic redistribution across climates: The role of the root hydraulic conductivities. Water Resour. Res., 51, 8529–8550, doi: 10.1002/2014WR016509.CrossRefGoogle Scholar
  35. Roerink, G. J., Z. Su, and M. Menenti, 2000: S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 147–157, doi: 10.1016/S1464-1909(99)00128-8.CrossRefGoogle Scholar
  36. Sellers, P. J., and Coauthors, 1997: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275, 502–509, doi: 10.1126/science.275.5299.502.CrossRefGoogle Scholar
  37. Shangguan, W., Y. J. Dai, Q. Y. Duan, B. Y. Liu, and H. Yuan, 2014: A global soil data set for earth system modeling. Journal of Advances in Modeling Earth Systems, 6, 249–263, doi: 10.1002/2013MS000293.CrossRefGoogle Scholar
  38. Stöckli, R., and Coauthors, 2008: Use of FLUXNET in the community land model development. J. Geophys. Res., 113, G01025, doi: 10.1029/2007JG000562.Google Scholar
  39. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183–7192, doi: 10.1029/2000JD900719.CrossRefGoogle Scholar
  40. Twine, T. E., and Coauthors, 2000: Correcting eddy-covariance flux underestimates over a grassland. Agricultural and Forest Meteorology, 103, 279–300, doi: 10.1016/S0168-1923(00) 00123-4.CrossRefGoogle Scholar
  41. Wang, G. L., C. Alo, R. Mei, and S. S. Sun, 2011: Droughts, hydraulic redistribution, and their impact on vegetation composition in the Amazon forest. Plant Ecology, 212, 663–673, doi: 10.1007/s11258-010-9860-4.CrossRefGoogle Scholar
  42. Wilson, K., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113, 223–243, doi: 10.1016/S0168-1923(02)00109-0.CrossRefGoogle Scholar
  43. Xin, Y. F., L. G. Bian, and X. H. Zhang, 2006: The application of CoLM to arid region of Northwest China and Qinghai-Xizang Plateau. Plateau Meteorology, 25, 567–574, doi: 10.3321/j.issn:1000-0534.2006.04.002. (in Chinese)Google Scholar
  44. Xu, T. R., S. L. Liang, and S. M. Liu, 2011: Estimating turbulent fluxes through assimilation of geostationary operational environmental satellites data using ensemble Kalman filter. J. Geophys. Res., 116, D09109, doi: 10.1029/2010JD015150.Google Scholar
  45. Yan, B. Y., and R. E. Dickinson, 2014: Modeling hydraulic redistribution and ecosystem response to droughts over the Amazon basin using Community Land Model 4.0 (CLM4). J. Geophys. Res., 119, 2130–2143, doi: 10.1002/2014JG002694.CrossRefGoogle Scholar
  46. Yang, K., Y. Y. Chen, and J. Qin, 2009: Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrology and Earth System Sciences, 13, 687–701, doi: 10.5194/hess-13-687-2009.CrossRefGoogle Scholar
  47. Yuan, H., Y. J. Dai, Z. Q. Xiao, D. Y. Ji, and W. Shangguan, 2011: Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling. Remote Sensing of Environment, 115, 1171–1187, doi: 10.1016/j.rse.2011.01.001.CrossRefGoogle Scholar
  48. Zeiger, E., G. D. Farquhar, and I. R. Cowan, 1987: Stomatal Function. Stanford University Press.Google Scholar
  49. Zeng, X. B., M. Shaikh, Y. J. Dai, R. E. Dickinson, and R. Myneni, 2002: Coupling of the common land model to the NCAR community climate model. J. Climate, 15, 1832–1854, doi: 10.1175/1520-0442(2002)015〈1832:COTCLM〉2.0.CO;2.CrossRefGoogle Scholar
  50. Zhang, S. W., D. Q. Li, and C. J. Qiu, 2011: A multimodel ensemble-based Kalman filter for the retrieval of soil moisture profiles. Adv. Atmos. Sci., 28, 195–206, doi: 10.1007/s00376-010-9200-6.CrossRefGoogle Scholar
  51. Zheng, J., Z. H. Xie, Y. J. Dai, X. Yuan, and X. Q. Bi, 2009: Coupling of the common land model (CoLM) with the regional climate model (RegCM3) and its preliminary validation. Chinese Journal of Atmospheric Sciences, 33, 737–750, doi: 10.3878/j.issn.1006-9895.2009.04.08. (in Chinese)Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Xiangxiang Zhang
    • 1
  • Yongjiu Dai
    • 2
    Email author
  • Hongzhi Cui
    • 1
  • Robert E. Dickinson
    • 3
  • Siguang Zhu
    • 1
  • Nan Wei
    • 1
  • Binyan Yan
    • 3
  • Hua Yuan
    • 2
  • Wei Shangguan
    • 2
  • Lili Wang
    • 1
  • Wenting Fu
    • 3
  1. 1.College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
  2. 2.School of Atmospheric SciencesSun Yat-sen UniversityGuangzhouChina
  3. 3.Department of Geological Sciencesthe University of Texas at AustinAustinUSA

Personalised recommendations