Advances in Atmospheric Sciences

, Volume 34, Issue 12, pp 1426–1436 | Cite as

The tropical Pacific–Indian Ocean associated mode simulated by LICOM2.0

  • Xin Li
  • Chongyin Li
Original Paper


Oceanic general circulation models have become an important tool for the study of marine status and change. This paper reports a numerical simulation carried out using LICOM2.0 and the forcing field from CORE. When compared with SODA reanalysis data and ERSST.v3b data, the patterns and variability of the tropical Pacific–Indian Ocean associated mode (PIOAM) are reproduced very well in this experiment. This indicates that, when the tropical central–western Indian Ocean and central–eastern Pacific are abnormally warmer/colder, the tropical eastern Indian Ocean and western Pacific are correspondingly colder/warmer. This further confirms that the tropical PIOAM is an important mode that is not only significant in the SST anomaly field, but also more obviously in the subsurface ocean temperature anomaly field. The surface associated mode index (SAMI) and the thermocline (i.e., subsurface) associated mode index (TAMI) calculated using the model output data are both consistent with the values of these indices derived from observation and reanalysis data. However, the model SAMI and TAMI are more closely and synchronously related to each other.

Key words

ocean general circulation model numerical simulation tropical Pacific–Indian Ocean associated mode subsurface ocean temperature anomaly 


大洋环流模式已成为研究海洋状态及其变化的重要工具. 本文利用中科院大气所的LICOM2.0模式和来自CORE的强迫场进行了一个数值模拟, 并重点分析了热带太平洋-印度洋联合模(以下简称联合模)特征在模式中的表现. 与SODA再分析资料和ERSST. V3b等观测资料进行对比发现, 数值试验很好地再现了联合模的形态和变率. 即, 当热带中西印度洋和中东太平洋异常偏暖/冷时, 热带东印度和西太平洋相应地偏冷/暖. 这进一步证实了联合模是热带太平洋—印度洋非常重要的一个模态, 不仅在表层海温异常场上显著, 而且在次表层海温异常场上表现更为明显. 研究还发现, 模式海温资料计算得到的表层联合模指数和温跃层(次表层)联合模指数与从观测资料中计算得到的都较为一致. 然而, 模式中这两个指数相关性更好而且更加同步.


大洋环流模式 数值模拟 热带太平洋-印度洋联合模 次表层海温异常 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Two anonymous reviewers provided careful comments on the submitted manuscript, which helped improve the article, and for which we are grateful. The authors also sincerely thank Professor Hailong LIU for his help with LICOM2.0. This work was supported by the National Basic Research Program of China (Grant No. 2013CB956203), the National Natural Science Foundation of China (Grant Nos. 41490642 and 41575062), and the Open Fund of LASG.


  1. Annamalai, H., S. P. Xie, J. P. McCreary, and R. Murtugudde, 2005: Impact of Indian ocean sea surface temperature on developing El Niño. J. Climate, 18, 302–319, doi: 10.1175/JCLI-3268.1.CrossRefGoogle Scholar
  2. Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172, doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.CrossRefGoogle Scholar
  3. Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon. Wea. Rev., 136, 2999–3017, doi: 10.1175/2007MWR1978.1.CrossRefGoogle Scholar
  4. Chao, J. P., Q. C. Chao, and L. Liu, 2005: The ENSO events in the tropical Pacific and Dipole events in the Indian Ocean. Acta Meteologica Sinica, 63, 594–602, doi: 10.3321/j.issn:0577-6619.2005.05.005. (in Chinese with English abstract)Google Scholar
  5. Griffies, S. M., and Coauthors, 2009: Coordinated ocean-ice reference experiments (COREs). Ocean Modelling, 26, 1–46, doi: 10.1016/j.ocemod.2008.08.007.CrossRefGoogle Scholar
  6. Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nature Geoscience, 3, 168–172, doi: 10.1038/ngeo760.CrossRefGoogle Scholar
  7. Jin, X. Z., X. H. Zhang, and T. J. Zhou, 1999: Fundamental framework and experiments of the third generation of IAP/LASG world ocean general circulation model. Adv. Atoms. Sci., 16, 197–215, doi: 10.1007/BF02973082.CrossRefGoogle Scholar
  8. Ju, J. H., L. L. Chen, and C. Y. Li, 2004: The preliminary research of Pacific-Indian Ocean sea surface temperature anomaly mode and the definition of its index. Journal of Tropical Meteorology, 20, 617–624, doi: 10.3969/j.issn.1004-4965.2004.06.001. (in Chinese with English abstract)Google Scholar
  9. Large, W. G., and S. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR/TN-460+STR, 1–105, doi: 10.5065/D6KK98Q6.Google Scholar
  10. Li, C. Y., and M. Q. Mu, 1999: El Niño occurrence and sub-surface ocean temperature anomalies in the pacific warm pool. Chinese Journal of Atmospheric Sciences, 23, 513–521, doi: 10.3878/j.issn.1006-9895.1999.05.01. (in Chinese with English abstract)Google Scholar
  11. Li, C. Y., and M. Q. Mu, 2000: Relationship between East Asian winter monsoon, warm pool situation and ENSO cycle. Chinese Science Bulletin, 45, 1448–1455, doi: 10.1007/BF02898885.CrossRefGoogle Scholar
  12. Li, C. Y., and M. Q. Mu, 2001: The influence of the Indian Ocean dipole on atmospheric circulation and climate. Adv. Atmos. Sci., 18, 831–843.Google Scholar
  13. Li, D. H., 2005: Establishment and application of oceanic general circulation model. PhD. dissertation, PLA University of Science and Technology, 200 pp. (in Chinese with English abstract)Google Scholar
  14. Li, X., 2015: The joint evolution of subsurface ocean temperature in tropical Indo-Pacific and its climate impacts. PhD dissertation, PLA University of Science and Technology, 165 pp. (in Chinese with English abstract)Google Scholar
  15. Li, X., C. Y. Li, Y. K. Tan, R. Zhang, and G. Li, 2013: Tropical Pacific-Indian Ocean thermocline temperature associated anomaly mode and its evolvement. Chinese Journal of Geophysics, 56, 3270–3284, doi: 10.6038/cjg20131005. (in Chinese with English abstract)Google Scholar
  16. Lian, T., D. K. Chen, Y. M. Tang, and B. G. Jin, 2014: A theoretical investigation of the tropical Indo-Pacific tripole mode. Science China Earth Sciences, 57, 174–188, doi: 10.1007/s11430-013-4762-7.CrossRefGoogle Scholar
  17. Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2. Acta Meteologica Sinica, 26, 318–329, doi: 10.1007/s13351-012-0305-y.CrossRefGoogle Scholar
  18. Liu, H. L., Y. Q. Yu, P. F. Lin, and F. C. Wang, 2014a: Highresolution LICOM. Flexible Global Ocean-Atmosphere-Land System Model, T. Zhou et al., Eds., Springer-Verlag, Berlin Heidelberg, 321–331.CrossRefGoogle Scholar
  19. Liu, H. L, P. F. Lin, Y. Q. Yu, F. C. Wang, X. Y. Liu, and X. H. Zhang, 2014b: LASG/IAP climate system ocean model version 2: LICOM2. Flexible Global Ocean-Atmosphere-Land System Model, T. Zhou et al., Eds., Springer-Verlag, Berlin Heidelberg, 15–26.CrossRefGoogle Scholar
  20. Qian, W. H., Y. F. Zhu, and J. Y. Liang, 2004: Potential contribution of maximum subsurface temperature anomalies to the climate variability. International Journal of Climatology, 24, 193–212, doi: 10.1002/joc.986.CrossRefGoogle Scholar
  21. Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.Google Scholar
  22. Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296, doi: 10.1175/2007JCLI2100.1.CrossRefGoogle Scholar
  23. Ueda, H., and J. Matsumoto, 2000: A possible triggering process of east-west asymmetric anomalies over the Indian Ocean in relation to 1997/98 El Niño. J. Meteor. Soc. Japan, 78, 803–818, doi: 10.2151/jmsj1965.78.6803.CrossRefGoogle Scholar
  24. Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356–360, doi: 10.1038/43848.CrossRefGoogle Scholar
  25. Wu, H. Y., and C. Y. Li, 2009: Numerical simulation of the tropical Pacific-Indian Ocean associated temperature anomaly mode. Climatic and Environmental Research, 14(6), 567–586, doi: 10.3878/j.issn.1006-9585.2009.06.01. (in Chinese with English abstract)Google Scholar
  26. Wu, H. Y., C. Y. Li, and M. Zhang, 2010: The preliminary numerical research of effects of ITF on tropical Pacific-Indian Ocean associated temperature anomaly mode. Journal of Tropical Meteorology, 26(5), 513–520, doi: 10.3969/j.issn.1004-4965.2010.05.001. (in Chinese with English abstract)Google Scholar
  27. Wu, S., Q. Y. Liu, and R. J. Hu, 2005: The main coupled mode of SSW and SST in the tropical Pacific South China Sea-Tropical Indian Ocean on interannual time scale. Periodical of Ocean University of China, 35, 521–526, doi: 10.3969/j.issn.1672-5174.2005.04.001. (in Chinese with English abstract)Google Scholar
  28. Yan, H. M., J. H. Ju, and Z. N. Xiao, 2001: The variable characteristics analysis of SSTA over the Indian ocean during the two phases of ENSO cycle. Journal of Nanjing Institute of Meteorology, 24, 242–249, doi: 10.3969/j.issn.1674-7097.2001.02.014. (in Chinese with English abstract)Google Scholar
  29. Yang, H., and C. Y. Li, 2005: Effect of the tropical Pacific-Indian ocean temperature anomaly mode on the south Asia high. Chinese Journal of Atmospheric Sciences, 29, 99–110, doi: 10.3878/j.issn.1006-9895.2005.01.12. (in Chinese with English abstract)Google Scholar
  30. Yang, H., X. L. Jia, and C. Y. Li, 2006: The tropical Pacific-Indian Ocean temperature anomaly mode and its effect. Chinese Science Bulletin, 51, 2878–1884, doi: 10.1007/s11434-006-2199-5.CrossRefGoogle Scholar
  31. Yu, L. S., and M. M. Rienecker, 1999: Mechanisms for the Indian Ocean warming during the 1997-98 El Niño. Geophys. Res. Lett., 26, 735–738, doi: 10.1029/1999GL900072.CrossRefGoogle Scholar
  32. Yu, Y. Q., H. L. Liu, and P. F. Lin, 2012: A quasi-global 1/10° eddy-resolving ocean general circulation model and its preliminary results. Chinese Science Bulletin, 57, 3908–3916, doi: 10.1007/s11434-012-5234-8.CrossRefGoogle Scholar
  33. Yuan, D. L., 2005: Role of the Kelvin and Rossby waves in the seasonal cycle of the equatorial Pacific Ocean circulation. J. Geophys. Res., 110, C04004, doi: 10.1029/2004JC002344.Google Scholar
  34. Yuan, D. L., and Coauthors, 2011: Forcing of the Indian Ocean Dipole on the interannual variations of the tropical Pacific Ocean: Roles of the Indonesian Throughflow. J. Climate, 24, 3593–3608, doi: 10.1175/2011JCLI3649.1.CrossRefGoogle Scholar
  35. Yuan, D. L., H. Zhou, and X. Zhao, 2013: Interannual climate variability over the tropical Pacific Ocean induced by the Indian Ocean Dipole through the Indonesian Throughflow. J. Climate, 26, 2845–2861, doi: 10.1175/JCLI-D-12-00117.1.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Meteorology & OceanographyNational University of Defense TechnologyNanjingChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations