Advances in Atmospheric Sciences

, Volume 34, Issue 5, pp 679–684 | Cite as

Decadal variation of the impact of La Niña on the winter Arctic stratosphere

  • Shuangyan Yang
  • Tim Li
  • Jinggao Hu
  • Xi Shen


The impact of La Niña on the winter Arctic stratosphere has thus far been an ambiguous topic of research. Contradictory results have been reported depending on the La Niña events considered. This study shows that this is mainly due to the decadal variation of La Niña’s impact on the winter Arctic stratosphere since the late 1970s. Specifically, during the period 1951–78, the tropospheric La Niña teleconnection exhibits a typical negative Pacific–North America pattern, which strongly inhibits the propagation of the planetary waves from the extratropical troposphere to the stratosphere, and leads to a significantly strengthened stratospheric polar vortex. In contrast, during 1979–2015, the La Niña teleconnection shifts eastwards, with an anomalous high concentrated in the northeastern Pacific. The destructive interference of the La Niña teleconnection with climatological stationary waves seen in the earlier period reduces greatly, which prevents the drastic reduction of planetary wave activities in the extratropical stratosphere. Correspondingly, the stratospheric response shows a less disturbed stratospheric polar vortex in winter.

Key words

La Niña stratospheric polar vortex decadal variation planetary waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was jointly supported by an NSFC project (Grant Nos. 41505034, 41630423), the China National 973 project (Grant No. 2015CB453200), NSF (AGS- 1565653), NSFC project (Grant No. 41475084), NRL (Grant No. N00173-161G906), Jiangsu NSF key project (Grant No. BK20150062), the Startup Foundation for Introducing Talent of NUIST (Grant No. 2014R010), a project funded by the Jiangsu Shuang-Chuang Team (Grant No. R2014SCT001), the Startup Foundation for Introducing Talent of NUIST (Grant No. 2014R010), and the Priority Academic Program Development of Jiangsu Higher Education Institutions. Jinggao Hu thanks the China Scholarship Council for funding and travel support. This paper is SOEST contribution number 9890, IPRC contribution number 1233, and ESMC contribution number 144.

Supplementary material

376_2016_6184_MOESM1_ESM.pdf (2.8 mb)
Supplementary material, approximately 1578 KB.


  1. Aselmann, I., and P. J. Crutzen, 1989: Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. Journal of Atmospheric Chemistry, 8(4), 307–358.CrossRefGoogle Scholar
  2. Baldocchi, D. D., 2003: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology, 9(4), 479–492, doi: 10.1046/j.1365-2486.2003.00629.x.CrossRefGoogle Scholar
  3. Baldocchi, D., R. Valentini, S. Running, W. Oechel, and R. Dahlman, 1996: Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Global Change Biology, 2(3), 159–168, doi: 10.1111/j. 1365-2486.1996.tb00069.x.CrossRefGoogle Scholar
  4. Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82(11), 2415–2434, doi: 10.1175/1520-0477(2001)082<2415:Fantts>2.3.Co;2.CrossRefGoogle Scholar
  5. Bintanja, R., 2000: Surface heat budget of Antarctic snow and blue ice: Interpretation of spatial and temporal variability. J. Geophys. Res., 105(D19), 24 387–24 407, doi: 10.1029/2000jd 900356.CrossRefGoogle Scholar
  6. Bounoua, L., G. J. Collatz, S. O. Los, P. J. Sellers, D. A. Dazlich, C. J. Tucker, and D. A. Randall, 2000: Sensitivity of climate to changes in NDVI. J. Climate, 13(13), 2277–2292, doi: 10.1175/1520-0442(2000)013<2277:Soctci>2.0.Co;2.CrossRefGoogle Scholar
  7. Bulić, I. H., Č Branković, and F. Kucharski, 2012: Winter ENSO teleconnections in a warmer climate. Climate Dyn., 38, 1593–1613.CrossRefGoogle Scholar
  8. Butler, A. H., L. M. Polvani, and C. Deser, 2014: Separating the stratospheric and tropospheric pathways of El Niño–Southern Oscillation teleconnections. Environmental Research Letters, 9, 024014, doi: 10.1088/1748-9326/9/2/024014.CrossRefGoogle Scholar
  9. Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449–469.CrossRefGoogle Scholar
  10. Deser, C., A. Phillips, V. Bourdette, and H. Y. Teng, 2010: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527–546.CrossRefGoogle Scholar
  11. Free, M., and D. J. Seidel, 2009: Observed El Niño–southern oscillation temperature signal in the stratosphere. J. Geophys. Res., 114(D23), D23108, doi: 10.1029/2009JD012420.CrossRefGoogle Scholar
  12. Garfinkel, C. I., and D. L. Hartmann, 2007: Effects of the El Nino–southern oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere. J. Geophys. Res., 112(D19), D19112, doi: 10.1029/2007JD008481.CrossRefGoogle Scholar
  13. Garfinkel, C. I., and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res., 113(D18), D18114, doi: 10.1029/2008 JD009920.CrossRefGoogle Scholar
  14. Garfinkel, C. I., D. L. Hartmann, and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 3282–3299.CrossRefGoogle Scholar
  15. Holton, J. R., and H. C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200–2208.CrossRefGoogle Scholar
  16. Hu, D. Z., W. S. Tian, F. Xie, J. C. Shu, and S. Dhomse, 2014a: Effects of meridional sea surface temperature changes on stratospheric temperature and circulation. Adv. Atmos. Sci., 31, 888–900, doi: 10.1007/s00376-013-3152-6.CrossRefGoogle Scholar
  17. Hu, J. G., R. C. Ren, and H. M. Xu, 2014b: Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming. J. Atmos. Sci., 71, 2319–2334.CrossRefGoogle Scholar
  18. Hu, J. G., R. C. Ren., H. M. Xu, and S. Y. Yang, 2015: Seasonal timing of stratospheric final warming associated with the intensity of stratospheric sudden warming in preceding winter. Science China Earth Sciences, 58, 615–627.CrossRefGoogle Scholar
  19. Hu, J. G., T. Li, H. M. Xu, S. Y. Yang, 2016: Lessened response of boreal winter stratospheric polar vortex to El Niño in recent decades. Climate Dyn. doi: 10.1007/s00382-016-3340-z.Google Scholar
  20. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.CrossRefGoogle Scholar
  21. Kim, B. M., and Coauthors, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, doi: 10.1038/ncomms5646.CrossRefGoogle Scholar
  22. King, M. P., M. Hell, and N. Keenlyside, 2016: Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the Northern Hemisphere. Climate Dyn., 46, 1185–1195.CrossRefGoogle Scholar
  23. Kren, A. C., D. R. Marsh, A. K. Smith, and P. Pilewskie, 2016: Wintertime Northern Hemisphere response in the stratosphere to the Pacific decadal oscillation using the whole atmosphere community climate model. J. Climate, 29, 1031–1049.CrossRefGoogle Scholar
  24. Manzini, E., M. A. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19, 3863–3881.CrossRefGoogle Scholar
  25. Meehl, G. A., and H. Y. Teng, 2007: Multi-model changes in El Niño teleconnections over North America in a future warmer climate. Climate Dyn., 29, 779–790.CrossRefGoogle Scholar
  26. Müller, W. A., and E. Roeckner, 2008: ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM. Climate Dyn., 31, 533–549.CrossRefGoogle Scholar
  27. Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, Y. Tomikawa, and J. Ukita, 2016: The stratospheric pathway for Arctic impacts on midlatitude climate. Geophys. Res. Lett., 43, 3494–3501.CrossRefGoogle Scholar
  28. Rao, J., and R. C. Ren, 2016: A decomposition of ENSO’s impacts on the northern winter stratosphere: Competing effect of SST forcing in the tropical Indian Ocean. Climate Dyn., 46, 3689–3707.CrossRefGoogle Scholar
  29. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), 4407, doi: 10.1029/2002JD 002670.CrossRefGoogle Scholar
  30. Ren, R. C., M. Cai, C. Y. Xiang, and G. X. Wu, 2012: Observational evidence of the delayed response of stratospheric polar vortex variability to ENSO SST anomalies. Climate Dyn., 38, 1345–1358.CrossRefGoogle Scholar
  31. Sassi, F., D. Kinnison, B. A. Boville, R. R. Garcia, and R. Roble, 2004: Effect of El Niño–southern oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J. Geophys. Res., 109(D17), D17108, doi: 10.1029/ 2003JD004434.CrossRefGoogle Scholar
  32. Wei, K., W. Chen, and R. H. Huang, 2007: Association of tropical Pacific sea surface temperatures with the stratospheric Holton-Tan Oscillation in the Northern Hemisphere winter. Geophys. Res. Lett., 34, L16814, doi: 10.1029/2007GL 030478.Google Scholar
  33. Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations?. Geophys. Res. Lett., 36, L12702, doi: 10.1029/2009GL038710.CrossRefGoogle Scholar
  34. Woo, S. H., M. K. Sung, S. W. Son, and J. S. Kug, 2015: Connection between weak stratospheric vortex events and the Pacific Decadal Oscillation. Climate Dyn., 45, 3481–3492.CrossRefGoogle Scholar
  35. Xie, F., J. Li, W. Tian, J. Feng, and Y. Huo, 2012: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmospheric Chemistry and Physics, 12, 5259–5273.CrossRefGoogle Scholar
  36. Xie F, J. P. Li, W. S. Tian, J. K. Zhang, and J. C. Shu, 2014: The impacts of two types of El Niño on global ozone variations in the last three decades. Adv. Atmos. Sci., 31, 1113–1126, doi: 10.1007/s00376-013-3166-0.CrossRefGoogle Scholar
  37. Zhou, Z. Q., S. P. Xie, X. T. Zheng, Q. Liu, and H. Wang, 2014: Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Climate., 27, 9050–9064.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Shuangyan Yang
    • 1
    • 2
  • Tim Li
    • 1
    • 2
  • Jinggao Hu
    • 1
    • 2
  • Xi Shen
    • 1
  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina
  2. 2.International Pacific Research Center and Department of Atmospheric SciencesUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations