Advertisement

Advances in Atmospheric Sciences

, Volume 34, Issue 5, pp 650–662 | Cite as

Air temperature estimation with MODIS data over the Northern Tibetan Plateau

  • Fangfang Huang
  • Weiqiang Ma
  • Binbin Wang
  • Zeyong Hu
  • Yaoming Ma
  • Genhou Sun
  • Zhipeng Xie
  • Yun Lin
Original Paper

Abstract

Time series of MODIS land surface temperature (T s) and normalized difference vegetation index (NDVI) products, combined with digital elevation model (DEM) and meteorological data from 2001 to 2012, were used to map the spatial distribution of monthly mean air temperature over the Northern Tibetan Plateau (NTP). A time series analysis and a regression analysis of monthly mean land surface temperature (T s) and air temperature (T a) were conducted using ordinary linear regression (OLR) and geographical weighted regression (GWR). The analyses showed that GWR, which considers MODIS T s, NDVI and elevation as independent variables, yielded much better results [R2 Adj > 0.79; root-mean-square error (RMSE) = 0.51°C–1.12°C] associated with estimating T a compared to those from OLR (R 2 Adj = 0.40−0.78; RMSE = 1.60°C–4.38°C). In addition, some characteristics of the spatial distribution of monthly T a and the difference between the surface and air temperature (T d) are as follows. According to the analysis of the 0°C and 10°C isothermals, T a values over the NTP at elevations of 4000–5000 m were greater than 10°C in the summer (from May to October), and T a values at an elevation of 3200 m dropped below 0°C in the winter (from November to April). T a exhibited an increasing trend from northwest to southeast. Except in the southeastern area of the NTP, T d values in other areas were all larger than 0°C in the winter.

Key words

air temperature estimation MODIS land surface temperature geographical weighted regression Northern Tibetan Plateau 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was funded by the Chinese Academy of Science “Hundred Talents” program (Dr. Weiqiang MA), the National Natural Science Foundation of China (Grant Nos. 41375009, 91337212, 41275010 and 41522501 and 41661144043), Study on long term changes of surface heat source in northern Tibetan Plateau and its thermal effect on the plateau monsoon system (Dr. Zeyong HU; Grant No. 91537101), the China Meteorological Administration Special Fund for Scientific Research in the Public Interest (Grant No. GYHY201406001), and the EU-FP7 project “CORECLIMAX” (Grant No. 313085).

References

  1. Good, E., 2015: Daily minimum and maximum surface air temperatures from geostationary satellite data. J. Geophys. Res.-Atmos., 120, 2306–2324.CrossRefGoogle Scholar
  2. He, J., and K. Yang, 2011: China meteorological forcing dataset. Cold and Arid Regions Science Data Center at Lanzhou, doi: 10.3972/westdc.002.2014.db. (in Chinese)Google Scholar
  3. Hengl T., G. B. M. Heuvelink, M. P. Tadić, and E. J. Pebesma, 2012: Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. Theor. Appl. Climatol., 107, 265–277.CrossRefGoogle Scholar
  4. Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, 2005: Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.CrossRefGoogle Scholar
  5. Huang, F. F., W. Q. Ma, M. S. Li, and Y. M. Ma, 2016: Analysis on responses of land surface temperature on the Northern Tibetan Plateau to climate change. Plateau Meteorology, 35, 55–63. (in Chinese with English abstract)Google Scholar
  6. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi: 10.1017/CBO9781107415324.Google Scholar
  7. Kilibarda, M., T. Hengl, G. B. M. Heuvelink, B. Gräler, E. Pebesma, M. P. Tadić, and B. Bajat, 2014: Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. J. Geophys. Res.-Atmos., 119, 2294–2313.CrossRefGoogle Scholar
  8. Li, M. S., Y. M. Ma, W. Q. Ma, H. Ishikawa, F. L. Sun, and S.-Y. Ogino, 2011: Structural difference of atmospheric boundary layer between dry and rainy seasons over the Central Tibetan Plateau. Journal of Glaciology and Geocryology, 33, 72–79. (in Chinese with English abstract)Google Scholar
  9. Li, S. D., and G. D. Cheng, 1996: Map of Frozen Ground on Qinghai-Xizang Plateau. Lanzhou: Gansu Culture Press. (in Chinese)Google Scholar
  10. Ma, W. Q., Y. M. Ma, and B. Su, 2011: Feasibility of retrieving land surface heat fluxes from ASTER data using SEBS: A case study from the NamCo area of the Tibetan Plateau. Arctic, Antarctic, and Alpine Research, 43, 239–245.CrossRefGoogle Scholar
  11. Ma, W. Q., Y. M. Ma, and H. Ishikawa, 2014: Evaluation of the SEBS for upscaling the evapotranspiration based on in-situ observations over the Tibetan Plateau. Atmospheric Research, 138, 91–97.CrossRefGoogle Scholar
  12. Ma, Y. M., T. D. Yao, J. M. Wang, Z. Y. Hu, H. Ishikawa, W. Q. Ma, M. Menenti, and Z. B. Su, 2006a: The study on the land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau. Advances in Earth Science, 21, 1215–1223. (in Chinese with English abstract)Google Scholar
  13. Ma, Y. M., L. Zhong, Z. B. Su, H. Ishikawa, M. Menenti, and T. Koike, 2006b: Determination of regional distributions and seasonal variations of land surface heat fluxes from Landsat-7 Enhanced Thematic Mapper data over the central Tibetan Plateau area. J. Geophys. Res.-Atmos., 111, D10305, doi: 10.1029/2005JD006742.CrossRefGoogle Scholar
  14. Mostovoy, G. V., R. L. King, K. R. Reddy, V. G. Kakani, and M. G. Filippova, 2006: Statistical estimation of daily maximum and minimum air temperatures from MODIS LST data over the state of Mississippi. Geoscience & Remote Sensing, 43, 78–110.CrossRefGoogle Scholar
  15. Nieto, H., I. Sandholt, I. Aguado, E. Chuvieco, and S. Stisen, 2011: Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula. Remote Sensing of Environment, 115, 107–116.CrossRefGoogle Scholar
  16. Ren, G. Y., Y. Y. Ren, Q. X. Li, and W. H. Xu, 2014: An overview on global land surface air temperature change. Advances in Earth Science, 29, 934–946. (in Chinese with English abstract)Google Scholar
  17. Ren, Y., X. Q. Zhang, and L. L. Peng, 2010: Construction and analysis of mean air temperature anomaly series for the Qinghai-Xizang Plateau during 1951–2006. Plateau Meteorology, 29, 572–578. (in Chinese with English abstract)Google Scholar
  18. Savage, M. J., C. S. Everson, and B. R. Metelerkamp, 2009: Bowen ratio evaporation measurement in a remote montane grassland: Data integrity and fluxes. J. Hydrol., 376, 249–260.CrossRefGoogle Scholar
  19. Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296.CrossRefGoogle Scholar
  20. Sun, H., Y. H. Chen, A. D. Gong, X. Zhao, W. F. Zhan, and M. J. Wang, 2014: Estimating mean air temperature using MODIS day and night land surface temperatures. Theor. Appl. Climatol., 118, 81–92.CrossRefGoogle Scholar
  21. Sun, Y.-J., J.-F. Wang, R.-H. Zhang, R. R. Gillies, Y. Xue, and Y.-C. Bo, 2005: Air temperature retrieval from remote sensing data based on thermodynamics. Theor. Appl. Climatol., 80 (1), 37–48.CrossRefGoogle Scholar
  22. Wang, A. H., and X. B. Zeng, 2015: Global hourly land surface air temperature datasets: Inter-comparison and climate change. International Journal of Climatology, 35, 3959–3968.CrossRefGoogle Scholar
  23. Yao, Y. H., and B. P. Zhang, 2013: MODIS-based estimation of air temperature and heating-up effect of the Tibetan Plateau. Acta Geographica Sinica, 68, 95–107. (in Chinese with English abstract)Google Scholar
  24. Zhang, W. G., S. X. Li, T. H. Wu, and Q. Q. Pang, 2007: Changes and spatial patterns of the differences between ground and air temperature over the Qinghai-Xizang Plateau. Journal of Geographical Sciences, 17, 20–32.CrossRefGoogle Scholar
  25. Zhang, W., Y. Huang, Y. Q. Yu, and W. J. Sun, 2011: Empirical models for estimating daily maximum, minimum and mean air temperatures with MODIS land surface temperatures. Int. J. Remote Sens., 32, 9415–9440.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Fangfang Huang
    • 1
    • 2
  • Weiqiang Ma
    • 3
    • 4
  • Binbin Wang
    • 3
  • Zeyong Hu
    • 1
    • 4
  • Yaoming Ma
    • 3
    • 4
  • Genhou Sun
    • 1
  • Zhipeng Xie
    • 1
  • Yun Lin
    • 1
  1. 1.Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina
  2. 2.Gansu Meteorological Information and Technology Support CenterGansu Meteorological BureauLanzhouChina
  3. 3.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  4. 4.Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina

Personalised recommendations