Advertisement

Advances in Atmospheric Sciences

, Volume 34, Issue 5, pp 587–598 | Cite as

Evaluation of the Antarctic Mesoscale Prediction System based on snow accumulation observations over the Ross Ice Shelf

  • Yihui Liu
  • Yetang Wang
  • Minghu Ding
  • Weijun Sun
  • Tong Zhang
  • Yuetong Xu
Original Paper

Abstract

Recent snow height measurements (2008–15) from nine automatic weather stations (AWSs) on the Ross Ice Shelf are used to examine the synoptic and seasonal variability in snow accumulation, and also to evaluate the performance of the Antarctic Mesoscale Prediction System (AMPS) for precipitation. The number of snow accumulation events varies from one station to another between 2008 and 2015, thus demonstrating geographic dependence. The interannual variability in snow accumulation is too high to determine its seasonality based on the current AWS observations with limited time coverage. Comparison between the AMPS and AWS snow height measurements show that approximately 28% of the AWS events are reproduced by AMPS. Furthermore, there are significant correlations between AMPS and AWS coincident event sizes at five stations (p < 0.05). This finding suggests that AMPS has a certain ability to represent actual precipitation events.

Key words

snow accumulation measurements precipitation evaluation Ross Ice Shelf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was funded by the National Key Basic Research Program of China (Grant No. 2013CBA01804), the Natural Science Foundation of China (Grant Nos. 41206175 and 41576182), and the Scientific Research Foundation for the Introduction of Talent by Shandong Normal University.

References

  1. Agosta, C., V. Favier V, C. Genthon, H. Gallée, G. Krinner, J. T. M. Lenaerts, and M. R. van den Broeke, 2012: A 40-year accumulation dataset for Adelie Land, Antarctica and its application for model validation. Climate Dyn., 38(1–2), 75–86.CrossRefGoogle Scholar
  2. Boening, C., M. Lebsock, F. Landerer, and G. Stephens, 2012: Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett., 39, L21501.Google Scholar
  3. Bosilovich, M. G., F. R. Robertson, and J. Y. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24(22), 5721–5739.CrossRefGoogle Scholar
  4. Brazenec, W. A., and N. J. Doesken, 2005: An evaluation of two ultrasonic snow depth sensors for potential use at automated surface weather observing sites. Proc. 13th Symp. on Meteorological Observations and Instrumentation, American Meteorological Society.Google Scholar
  5. Bromwich, D. H., J. J. Cassano, T. Kleinet, G. Heinemann, K. M. Hines, K. Steffen, and J. E. Box, 2001: Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon. Wea. Rev., 129(9), 2290–2309.CrossRefGoogle Scholar
  6. Bromwich, D. H., A. J. Monaghan, K.W. Manning, and J. G. Powers, 2005: Real-time forecasting for the Antarctic: An evalu ation of the Antarctic Mesoscale Prediction System (AMPS). Mon. Wea. Rev., 133, 579–603.CrossRefGoogle Scholar
  7. Bromwich, D. H., D. F. Steinhoff, I. Simmonds, K. Keay, and R. L. Fogt, 2011a: Climatological aspects of cyclogenesis near Adélie Land, Antarctica. Tellus A, 63(5), 921–938, http://dx.doi.org/10.1111/j.1600-0870.2011.00537.x.CrossRefGoogle Scholar
  8. Bromwich, D. H., J. P. Nicolas, and A. J. Monaghan, 2011b: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24(16), 4189–4209.CrossRefGoogle Scholar
  9. Bromwich, D. H., F. O. Otieno, K. M. Hines, K. W. Manning, and E. Shilo, 2013: Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic. J. Geophys. Res. Atmos., 118(2), 274–292.CrossRefGoogle Scholar
  10. Cohen, L., and S. Dean, 2013: Snow on the Ross Ice Shelf: Comparison of reanalyses and observations from automatic weather stations. The Cryosphere, 7(5), 1399–1410.CrossRefGoogle Scholar
  11. Eisen, O., and Coauthors, 2008: Ground-based measurements of spatial and temporal variability of snow accumulation in east Antarctica. Rev. Geophys., 46(2), RG2001–1–RG2001–39.CrossRefGoogle Scholar
  12. Ettema, J., M. R. van den Broeke, E. van Meijgaard, W. Jan van de Berg, J. L. Bamber, J. E. Box, and R. C. Bales, 2009: Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys. Res. Lett., 36(12), L12501.CrossRefGoogle Scholar
  13. Fountain, A. G., T. H. Nylen, A. Monaghan, H. J. Basagic, and D. Bromwich, 2010: Snow in the McMurdo Dry Valleys, Antarctica. International Journal of Climatology, 30(5), 633–642.Google Scholar
  14. Frezzotti, M., and Coauthors, 2004: New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Climate Dyn., 23, 803–813.CrossRefGoogle Scholar
  15. Gallée, H., A. Trouvilliez, C. Amory, C. Agosta, C. Genthon, X. Fettweis, V. Favier, and F. Naaim-Bouvet, 2013: Simulations of blowing snow over Antarctica. International Snow Science Workshop, Grenoble Chamonix Mont-Blanc, Grenoble, Chamonix, International Snow Science Workshop, 120–125.Google Scholar
  16. Gorodetskaya, I. V., and Coauthors, 2015: Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica. The Cryosphere, 9, 285–304.CrossRefGoogle Scholar
  17. Kameda, T., H. Motoyama, S. Fujita, and S. Takahashi, 2008: Temporal and spatial variability of surface mass balance at Dome Fuji, East Antarctica, by the stake method from 1995 to 2006. J. Glaciol., 54(184), 107–116.CrossRefGoogle Scholar
  18. Lazzara, M. A., G. A. Weidner, L. M. Keller, J. E. Thom, and J. J. Cassano, 2012: Antarctic Automatic Weather Station Program: 30 years of polar observations. Bull. Amer. Meteor. Soc., 93(10), 1519–1537.CrossRefGoogle Scholar
  19. Lenaerts, J. T. M., M. R. van den Broeke, S. J. Déry, G. König-Langlo, J. Ettema, and P. K. Munneke, 2010: Modelling snowdrift sublimation on an Antarctic ice shelf. The Cryosphere, 4, 179–190.CrossRefGoogle Scholar
  20. Lenaerts, J. T. M., M. R. van den Broeke, S. J. Déry, E. van Meijgaard, W. J. van de Berg, S. P. Palm, and J. S. Rodrigo, 2012: Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation. J. Geophys. Res., 117, D05108.Google Scholar
  21. Medley, B., and Coauthors, 2013: Airborne-radar and ice-core observations of annual snow accumulation over Thwaites Glacier, West Antarctica confirm the spatiotemporal variability of global and regional atmospheric models. Geophys. Res. Lett., 40(14), 3649–3654.CrossRefGoogle Scholar
  22. Monaghan, A. J., and Coauthors, 2006a: Insignificant change in Antarctic snowfall since the International Geophysical Year. Science, 313(5788), 827–831.CrossRefGoogle Scholar
  23. Monaghan, A. J., D. H. Bromwich, and S. H. Wang, 2006b: Recent trends in Antarctic snow accumulation from Polar MM5 simulations. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 364(1844), 1683–1708.CrossRefGoogle Scholar
  24. Palerme, C., J. E. Kay, C. Genthon, T. L’Ecuyer, N. B. Wood, and C. Claud, 2014: How much snow falls on the Antarctic ice sheet? The Cryosphere, 8(4), 1577–1587.CrossRefGoogle Scholar
  25. Palerme, C., C. Genthon, C. Claud, J. E. Kay, N. B. Wood, T. L’Ecuyer, 2016: Evaluation of current and projected Antarctic precipitation in CMIP5 models. Climate Dyn., 1–15, doi: 10.1007/s00382-016-3071-1.Google Scholar
  26. Powers, J. G., A. J. Monaghan, A. M. Cayette, D. H. Bromwich, Y.-H. Kuo, and K. W. Manning, 2003: Real-time mesoscale modeling over Antarctica: The Antarctic Mesoscale Prediction System. Bull. Amer. Meteor. Soc., 84(11), 1533–1545.CrossRefGoogle Scholar
  27. Powers, J. G., K.W. Manning, D. H. Bromwich, J. J. Cassano, and A. M. Cayette, 2012: A decade of Antarctic science support through AMPS. Bull. Amer. Meteor. Soc., 93, 1699–1712.CrossRefGoogle Scholar
  28. Pritchard, H. D., S. R. M. Ligtenberg, H. A. Fricker, D. G. Vaughan, M. R. van den Broeke, and L. Padman, 2012: Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484(7395), 502–505.CrossRefGoogle Scholar
  29. Reijmer, C. H., and M. R. van den Brokek, 2003: Temporal and spatial variability of the surface mass balance in Dronning Maud Land, Antarctica, as derived from automatic weather stations. J. Glaciol., 49(167), 512–520.CrossRefGoogle Scholar
  30. Rignot, E., I. Velicogna, M. R. van den Broeke, A. Monaghan, and J. T. M. Lenaerts, 2011: Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38(5), L05503.CrossRefGoogle Scholar
  31. Schlosser, E., M. G. Duda, J. G. Powers, and K.W. Manning, 2008: Precipitation regime of Dronning Maud Land, Antarctica, derived from Antarctic Mesoscale Prediction System (AMPS) archive data. J. Geophys. Res., 113, D24108.CrossRefGoogle Scholar
  32. Schlosser, E., J. G. Powers, M. G. Duda, K. W. Manning, C. H. Reijmer, and M. R. van den Broeke, 2010: An extreme precipitation event in Dronning Maud Land, Antarctica: A case study with the Antarctic Mesoscale Prediction System. Polar Research, 29, 330–344.Google Scholar
  33. Schlosser, E., B. Stenni, M. Valt, A. Cagnati, J. G. Powers, K. W. Manning, M. Raphael, and M. G. Duda, 2016: Precipitation and synoptic regime in two extreme years 2009 and 2010 at Dome C, Antarctica–implications for ice core interpretation. Atmos. Chem. Phys., 16, 4757–4770.CrossRefGoogle Scholar
  34. Shepherd, A., and Coauthors, 2012: A reconciled estimate of icesheet mass balance. Science, 338(6111), 1183–1189.CrossRefGoogle Scholar
  35. Sinisalo, A., and Coauthors, 2013: Surface mass balance on Fimbul ice shelf, East Antarctica: Comparison of field measurements and large-scale studies. J. Geophys. Res. Atmos., 118(20), 11 625–11 635.CrossRefGoogle Scholar
  36. Skamarock, W. C., and Coauthors, 2009: A description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN–475+STR, 113 pp.Google Scholar
  37. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.Google Scholar
  38. Thomas, E. R., and T. J. Bracegirdle, 2009: Improving ice core interpretation using in situ and reanalysis data. J. Geophys. Res. Atmos., 114(D20), D20116.CrossRefGoogle Scholar
  39. Thomas, E. R., and T. J. Bracegirdle, 2015: Precipitation pathways for five new ice core sites in Ellsworth Land,West Antarctica. Climate Dyn., 44(7–8), 2067–2078.CrossRefGoogle Scholar
  40. Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2010: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24(18), 4907–4924.CrossRefGoogle Scholar
  41. Wang, Y. T., S. G. Hou, W. J. Sun, T. M. Lenaerts Jan, M. R. van den Broeke, and J. M. van Wessem, 2015: Recent surface mass balance from Syowa Station to Dome F, East Antarctica: Comparison of field observations, atmospheric reanalyses, and a regional atmospheric climate model. Climate Dyn., 45(9–10), 2885–2899.CrossRefGoogle Scholar
  42. Welker, C., O. Martius, P. Froidevaux, C. H. Reijmer and H. Fischer, 2014: A climatological analysis of high-precipitation events in Dronning Maud Land, Antarctica, and associated large-scale atmospheric conditions. J. Geophys. Res. Atmos., 119, 11932–11954.CrossRefGoogle Scholar
  43. Wouters, B., J. L. Bamber, M. R. van den Broeke, J. T. M. Lenaerts, and I. Sasgen, 2013: Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nature Geoscience, 6(8), 613–616.CrossRefGoogle Scholar
  44. Zwally, H. J., and M. B. Giovinetto, 2011: Overview and assessment of Antarctic Ice-Sheet mass balance estimates: 1992–2009. Surveys in Geophysics, 32(4–5), 351–376.CrossRefGoogle Scholar
  45. Zwally, H. J., J. Li, J. W. Robbins, J. L. Saba, D. H. Yi, and A. C. Brenner, 2015: Mass gains of the Antarctic ice sheet exceed losses. J. Glaciol., 61(230), 1019–1036.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yihui Liu
    • 1
  • Yetang Wang
    • 1
  • Minghu Ding
    • 2
  • Weijun Sun
    • 1
  • Tong Zhang
    • 2
  • Yuetong Xu
    • 1
  1. 1.College of Geography and EnvironmentShandong Normal UniversityJinanChina
  2. 2.Institute of Climate SystemChinese Academy of Meteorological SciencesBeijingChina

Personalised recommendations