Advances in Atmospheric Sciences

, Volume 34, Issue 2, pp 181–198 | Cite as

On the contrasting decadal changes of diurnal surface temperature range between the Tibetan Plateau and southeastern China during the 1980s–2000s

Original Paper

Abstract

The diurnal surface temperature range (DTR) has become significantly smaller over the Tibetan Plateau (TP) but larger in southeastern China, despite the daily mean surface temperature having increased steadily in both areas during recent decades. Based on ERA-Interim reanalysis data covering 1979–2012, this study shows that the weakened DTR over TP is caused by stronger warming of daily minimum surface temperature (Tmin) and a weak cooling of the daily maximum surface temperature (Tmax); meanwhile, the enhanced DTR over southeastern China is mainly associated with a relatively stronger/weaker warming of Tmax/Tmin. A further quantitative analysis of DTR changes through a process-based decomposition method—the Coupled Surface–Atmosphere Climate Feedback Response Analysis Method (CFRAM)—indicates that changes in radiative processes are mainly responsible for the decreased DTR over the TP. In particular, the increased low-level cloud cover tends to induce the radiative cooling/warming during daytime/nighttime, and the increased water vapor helps to decrease the DTR through the stronger radiative warming during nighttime than daytime. Contributions from the changes in all radiative processes (over −2°C) are compensated for by those from the stronger decreased surface sensible heat flux during daytime than during nighttime (approximately 2.5°C), but are co-contributed by the changes in atmospheric dynamics (approximately −0.4°C) and the stronger increased latent heat flux during daytime (approximately −0.8°C). In contrast, the increased DTR over southeastern China is mainly contributed by the changes in cloud, water vapor and atmospheric dynamics. The changes in surface heat fluxes have resulted in a decrease in DTR over southeastern China.

Keywords

Tibetan Plateau diurnal surface temperature range decadal change CFRAM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braganza, K., D. J. Karoly, and J. M. Arblaster, 2004: Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett., 31, doi: 10.1029/2004GL019998.Google Scholar
  2. Cai, M., and J. H. Lu, 2009: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: Method demonstrations and comparisons. Climate Dyn., 32, 887–900.CrossRefGoogle Scholar
  3. Cai, M., and K. K. Tung, 2012: Robustness of dynamical feedbacks from radiative forcing: 2% solar versus 2×CO2 experiments in an idealized GCM. J. Atmos. Sci., 69, 2256–2271.CrossRefGoogle Scholar
  4. Collatz, G. J., L. Bounoua, S. O. Los, D. A. Randall, I. Y. Fung, and P. J. Sellers, 2000: A mechanism for the influence of vegetation on the response of the diurnal temperature range to changing climate. Geophys. Res. Lett., 27(20), 3381–3384.CrossRefGoogle Scholar
  5. Dai, A. G., K. E. Trenberth, and T. R. Karl, 1999: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 2451–2473.CrossRefGoogle Scholar
  6. Decker, M., M. A. Brunke, Z. Wang, K. Sakaguchi, X. B. Zeng, and M. G. Bosilovich, 2012: Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J. Climate, 25(6), 1916–1944.CrossRefGoogle Scholar
  7. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.CrossRefGoogle Scholar
  8. Deng, Y., T. W. Park, and M. Cai, 2012: Process-based decomposition of the global surface temperature response to El Ni˜no in boreal winter. J. Atmos. Sci., 69, 1706–1712.CrossRefGoogle Scholar
  9. Duan, A. M., and G. X. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24(7), 793–807.CrossRefGoogle Scholar
  10. Duan, A. M., and G. X. Wu, 2006: Change of cloud amount and the climate warming on the Tibetan plateau. Geophys. Res. Let., 33, 217–234.CrossRefGoogle Scholar
  11. Duan, A. M., and G. X. Wu, 2008: Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations. J. Climate, 21, 3149–3164.CrossRefGoogle Scholar
  12. Duan, A. M., and Z. X. Xiao, 2015: Does the climate warming hiatus exist over the Tibetan Plateau? Sci. Rep., 5, 13711, doi: 10.1038/srep13711.CrossRefGoogle Scholar
  13. Duan, A. M., G. X. Wu, Q. Zhang, and Y. M. Liu, 2006: New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions. Chinese Science Bulletin, 51, 1396–1400.CrossRefGoogle Scholar
  14. Easterling, D. R., and Coauthors, 1997: Maximum and minimum temperature trends for the globe. Science, 277, 364–367.CrossRefGoogle Scholar
  15. Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 2139–2156.CrossRefGoogle Scholar
  16. Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 2008–2025.CrossRefGoogle Scholar
  17. Kalnay, E., and M. Cai, 2003: Impact of urbanization and land-use change on climate. Nature, 423, 528–531.CrossRefGoogle Scholar
  18. Kang, S. C., Y. W. Xu, Q. L. You, W.-A. Flügel, N. Pepin, and T. D. Yao, 2010: Review of climate and cryospheric change in the Tibetan plateau. Environ. Res. Lett., 5(1), 015101.CrossRefGoogle Scholar
  19. Karl, T. R., and Coauthors, 1993: Asymmetric trends of daily maximum and minimum temperature. Bull. Amer. Meteor. Soc., 74, 1007–1023.CrossRefGoogle Scholar
  20. Liang, H., 2012: Variation of the Atmospheric water vapor and its radiative effect simulation over the Tibetan Plateau. PhD dissertation, Chinese Academy of Meteorological Sciences. (in Chinese)Google Scholar
  21. Liu, B. H., M. Xu, M. Henderson, Y. Qi, and Y. Q. Li, 2004: Taking China’s temperature: Daily range, warming trends, and regional variations, 1955–2000. J. Climate, 17, 4453–4462.CrossRefGoogle Scholar
  22. Liu, B., T. J. Zhou, and J. H. Lu, 2015: Quantifying contributions of model processes to the surface temperature bias in FGOALS-g2. Journal of Advances in Modeling Earth Systems, 7, 1519–1533.CrossRefGoogle Scholar
  23. Liu, X. D., and B. D. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20(14), 1729–1742.CrossRefGoogle Scholar
  24. Lu, J. H., and M. Cai, 2009: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: Formulation. Climate Dyn., 32, 873–885.CrossRefGoogle Scholar
  25. Mao, J. F., X. Y. Shi, L. J. Ma, D. P. Kaiser, Q. X. Li, and P. E. Thornton, 2010: Assessment of reanalysis daily extreme temperatures with China’s homogenized historical dataset during 1979-2001 using probability density functions. J. Climate, 23, 6605–6623.CrossRefGoogle Scholar
  26. Oku, Y., H. Ishikawa, S. Haginoya, and Y. M. Ma, 2006: Recent trends in land surface temperature on the Tibetan Plateau. J. Climate, 19, 2995–3003.CrossRefGoogle Scholar
  27. Park, T.-W., Y. Deng, M. Cai, J.-H. Jeong, and R. J. Zhou, 2014: A dissection of the surface temperature biases in the community earth system model. Climate Dyn., 43(7–8), 2043–2059.CrossRefGoogle Scholar
  28. Price, C., S. Michaelides, S. Pashiardis, and P. Alpert, 1999: Long term changes in diurnal temperature range in Cyprus. Atmos Res., 51(2), 85–98.CrossRefGoogle Scholar
  29. Ren, G. Y., and Y. Q. Zhou, 2014: Urbanization effect on trends of extreme temperature indices of national stations over Mainland China, 1961–2008. J. Climate, 27, 2340–2360.CrossRefGoogle Scholar
  30. Ren, R. C., G. X. Wu, M. Cai, S. Y. Sun, X. Liu, and W. P. Li, 2014: Progress in research of stratosphere-troposphere interactions: Application of isentropic potential vorticity dynamics and the effects of the Tibetan Plateau. Journal of Meteorological Research, 28(5), 714–731.CrossRefGoogle Scholar
  31. Ren, R. C., Y. Yang, M. Cai, and J. Rao, 2015: Understanding the systematic air temperature biases in a coupled climate system model through a process-based decomposition method. Climate Dyn., 45(7–8), 1801–1817.CrossRefGoogle Scholar
  32. Ren, R. C., S. Y. Sun, Y. Yang, and Q. Li, 2016: Summer SST anomalies in the Indian Ocean and the seasonal timing of ENSO decay phase. Climate Dyn., 47, 1827–1844, doi: 10.1007/s00382-015-2935-0.CrossRefGoogle Scholar
  33. Sejas, S. A., M. Cai, A. X. Hu, G. A. Meehl,W.Washington, and P. C. Taylor, 2014: Individual feedback contributions to the seasonality of surface warming. J. Climate, 27(14), 5653–5669.CrossRefGoogle Scholar
  34. Shen, X. J., B. H. Liu, G. D. Li, Z. F. Wu, Y. H. Jin, P. J. Yu, and D. W. Zhou, 2014: Spatiotemporal change of diurnal temperature range and its relationship with sunshine duration and precipitation in China. J. Geophys. Res., 119, 13 163–13 179.Google Scholar
  35. Shi, Q., and S. Liang, 2014: Surface-sensible and latent heat fluxes over the Tibetan Plateau from ground measurements, reanalysis, and satellite data. Atmos. Chem. Phys., 14, 5659–5677.CrossRefGoogle Scholar
  36. Stone, D., and A. Weaver, 2003: Factors contributing to diurnal temperature range trends in twentieth and twenty-first century simulations of the CCCma coupled model. Climate Dyn., 20(5), 435–445.Google Scholar
  37. Sun, Y. T., Q. J. Gao, and J. Z. Min, 2013: Comparison of reanalysis data and observation about summer/winter surface air temperature in Tibet. Plateau Meteorology, 32, 909–920 (in Chinese).Google Scholar
  38. Wang, A. H., and X. B. Zeng, 2012: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res., 117, D05102.Google Scholar
  39. Wang, M. R., S. W. Zhou, and A. M. Duan, 2012: Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades: Comparison of observations and reanalysis data. Chinese Science Bulletin, 57, 548–557.CrossRefGoogle Scholar
  40. Wang, Z. Q., A. M. Duan, and G. X. Wu, 2014: Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in east China: Case studies using the WRF model. Climate Dyn., 42(11), 2885–2898.CrossRefGoogle Scholar
  41. Wu, G. X., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian Climate. Journal of Hydrometeorology, 8, 770–789.CrossRefGoogle Scholar
  42. Wu, G. X., Y. M. Liu, B. He, Q. Bao, A. M. Duan, and F.-F. Jin, 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, doi: 10.1038/srep00404.Google Scholar
  43. Xia, X., 2013: Variability and trend of diurnal temperature range in China and their relationship to total cloud cover and sunshine duration. Ann. Geophys., 31, 795–804.CrossRefGoogle Scholar
  44. Yanai, M., and G.-X. Wu, 2006: Effects of the Tibetan Plateau. B. Wang, Ed., The Asian Monsoon, Springer, Berlin Heidelberg, 513–549.Google Scholar
  45. Yang, K., H. Wu, J. Qin, C. G. Lin, W. J. Tang, and Y. Y. Chen, 2014: Recent climate changes over the Tibetan plateau and their impacts on energy and water cycle: A review. Global and Planetary Change, 112, 79–91.CrossRefGoogle Scholar
  46. Yang, Y., and R.-C. Ren, 2015: Understanding the global surfaceatmosphere energy balance in FGOALS-s2 through an attribution analysis of the global temperature biases. Atmos. Ocean. Sci. Lett., 8, 107–112.CrossRefGoogle Scholar
  47. Yang, Y., R. C. Ren, M. Cai, and J. Rao, 2015: Attributing analysis on the model bias in surface temperature in the climate system model FGOALS-s2 through a process-based decomposition method. Adv. Atmos. Sci., 32, 457–469, doi: 10.1007/s00376-014-4061-z.CrossRefGoogle Scholar
  48. Yang, Y., R.-C. Ren, and M. Cai, 2016: Towards a physical understanding of stratospheric cooling under global warming through a process-based decomposition method. Climate Dyn., doi: 10.1007/s00382-016-3040-8.Google Scholar
  49. You, Q. L., S. C. Kang, E. Aguilar, and Y. P. Yan, 2008: Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J. Geophys. Res., 113, D07101, doi: 10.1029/2007JD009389.CrossRefGoogle Scholar
  50. You, Q. L., K. Fraedrich, J. Z. Min, S. C. Kang, X. H. Zhu, G. Y. Ren, and X. H. Meng, 2013: Can temperature extremes in China be calculated from reanalysis? Global and Planetary Change, 111, 268–279.CrossRefGoogle Scholar
  51. You, Q. L., J. Z. Min, Y. Jiao, M. Sillanpää, and S. C. Kang, 2016: Observed trend of diurnal temperature range in the Tibetan Plateau in recent decades. International Journal of Climatology, 36, 2633–2643, doi: 10.1002/joc.4517.CrossRefGoogle Scholar
  52. Zhou, L. M., R. E. Dickinson, A. G. Dai, and P. Dirmeyer, 2010: Detection and attribution of anthropogenic forcing to diurnal temperature range changes from 1950 to 1999: Comparing multi-model simulations with observations. Climate Dyn., 35, 1289–1307.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Institute of Urban MeteorologyChina Meteorological AdministrationBeijingChina
  3. 3.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters and KLMENanjing University of Information Science and TechnologyNanjingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations