Advances in Atmospheric Sciences

, Volume 34, Issue 1, pp 16–25 | Cite as

A cloud detection scheme for the Chinese Carbon Dioxide Observation Satellite (TANSAT)

  • Xi Wang
  • Zheng Guo
  • Yipeng Huang
  • Hongjie Fan
  • Wanbiao LiEmail author
Open Access
Original Paper


Cloud detection is an essential preprocessing step for retrieving carbon dioxide from satellite observations of reflected sunlight. During the pre-launch study of the Chinese Carbon Dioxide Observation Satellite (TANSAT), a cloud-screening scheme was presented for the Cloud and Aerosol Polarization Imager (CAPI), which only performs measurements in five channels located in the visible to near-infrared regions of the spectrum. The scheme for CAPI, based on previous cloudscreening algorithms, defines a method to regroup individual threshold tests for each pixel in a scene according to the derived clear confidence level. This scheme is proven to be more effective for sensors with few channels. The work relies upon the radiance data from the Visible and Infrared Radiometer (VIRR) onboard the Chinese FengYun-3A Polar-orbiting Meteorological Satellite (FY-3A), which uses four wavebands similar to that of CAPI and can serve as a proxy for its measurements. The scheme has been applied to a number of the VIRR scenes over four target areas (desert, snow, ocean, forest) for all seasons. To assess the screening results, comparisons against the cloud-screening product from MODIS are made. The evaluation suggests that the proposed scheme inherits the advantages of schemes described in previous publications and shows improved cloud-screening results. A seasonal analysis reveals that this scheme provides better performance during warmer seasons, except for observations over oceans, where results are much better in colder seasons.


TANSAT CAPI cloud detection regrouping scheme 



This research was sponsored by the National Basic Research (973) Program of China from the Ministry of Science and Technology of China (Grant No. 2013CB430104) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05040201).


  1. Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103, 32141–32158.CrossRefGoogle Scholar
  2. Ackerman, S. A., R. E. Holz, R. Frey, E. W. Eloranta, B. C. Maddux, and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25, 1073–1086.Google Scholar
  3. Arino, O., J. R. Perez, V. Kalogirou, P. Defourny, and F. Achard, 2010: GlobCover 2009. Proceedings of ESA Living Planet Symposium, 28 June–2 July, Bergen, Norway, 3 pp. [Available online at et al GlobCover 2009-a.pdf.]Google Scholar
  4. Barkley, M. P., P. S. Monks, and R. J. Engelen, 2006: Comparison of SCIAMACHY and AIRS CO2 measurements over North America during the summer and autumn of 2003. Geophys. Res. Lett., 33, L20805.CrossRefGoogle Scholar
  5. Bi, Y. M., Z. D. Yang, S. Y. Gu, Q. Wang, L. Gao, and J. Chen, 2014: Impacts of aerosol and albedo on TanSat CO2 retrieval using the near infrared CO2 bands. Proc. SPIE 9259, Remote Sensing of the Atmosphere, Clouds, and Precipitation V, 925915 (November 8, 2014); doi: 10.1117/12.2066123.Google Scholar
  6. Bovensmann, H., J. P. Burrows, M. Buchwitz, J. Frerick, S. Nöel, V. V. Rozanov, K. V. Chance, and A. P. H. Goede, 1999: SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci., 56, 127–150.CrossRefGoogle Scholar
  7. Butz, A., and Coauthors, 2011: Toward accurate CO2 and CH4 observations from GOSAT. Geophys. Res. Lett., 38, L14812, doi: 10.1029/2011GL047888.CrossRefGoogle Scholar
  8. Cai, Z. N., Y. Liu, and D. X. Yang, 2014: Analysis of XCO2 retrieval sensitivity using simulated Chinese Carbon Satellite (TanSat) measurements. Science China Earth Sciences, 57, 1919–1928.CrossRefGoogle Scholar
  9. Chahine, M., C. Barnet, E. T. Olsen, L. Chen, and E. Maddy, 2005: On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2. Geophys. Res. Lett., 32, L22803, doi: 10.1029/2005GL 024165.CrossRefGoogle Scholar
  10. Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911–926.CrossRefGoogle Scholar
  11. Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187.CrossRefGoogle Scholar
  12. Crisp, D., C. E. Miller, and P. L. Decola, 2008: NASA Orbiting Carbon Observatory: Measuring the column averaged carbon dioxide mole fraction from space. Journal of Applied Remote Sensing, 2, 023508.CrossRefGoogle Scholar
  13. Dong, C. H., and Coauthors, 2009: An overview of a New Chinese weather satellite FY-3A. Bull. Amer. Meteor. Soc., 90, 1531–1544.CrossRefGoogle Scholar
  14. Farquhar, G. D., 1997: CLIMATE CHANGE: Carbon dioxide and vegetation. Science, 278, 1411.CrossRefGoogle Scholar
  15. Frey, R. A., S. A. Ackerman, Y. H. Liu, K. I. Strabala, H. Zhang, J. R. Key, and X. Wang, 2008: Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5. J. Atmos. Oceanic Technol., 25, 1057–1072.Google Scholar
  16. Gao, B. C., A. F. H. Goetz, and W. J. Wiscombe, 1993: Cirrus cloud detection from Airborne Imaging Spectrometer data using the 1.38 µm water vapor band. Geophys. Res. Lett., 20, 301–304.CrossRefGoogle Scholar
  17. Gesell, G., 1989: An algorithm for snow and ice detection using AVHRR data: An extension to the APOLLO software package. Int. J. Remote Sens., 10, 897–905.CrossRefGoogle Scholar
  18. Hall, D. K., and G. A. Riggs, 2011: Normalized-difference snow index (NDSI). Encyclopedia of Snow, Ice and Glaciers, V. P. Singh, P. Singh, and U. K. Haritashya, Eds., Springer, 779–780.Google Scholar
  19. Hall, D. K., G. A. Riggs, and V. V. Salomonson, 1995: Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment, 54, 127–140.CrossRefGoogle Scholar
  20. Hall, D. K., G. A. Riggs, V. V. Salomonson, N. E. DiGirolamo, and K. J. Bayr, 2002: MODIS snow-cover products. Remote Sensing of Environment, 83, 181–194.CrossRefGoogle Scholar
  21. He, Q.-J., 2011: A daytime cloud detection algorithm for FY-3A/VIRR data. Int. J. Remote Sens., 32, 6811–6822.CrossRefGoogle Scholar
  22. Hulley, G. C., and S. J. Hook, 2008: A new methodology for cloud detection and classification with ASTER data. Geophys. Res. Lett., 35, L16812.CrossRefGoogle Scholar
  23. Hutchison, K. D., B. D. Iisager, and B. Hauss, 2012: The use of global synthetic data for pre-launch tuning of the VIIRS cloud mask algorithm. Int. J. Remote Sens., 33, 1400–1423.CrossRefGoogle Scholar
  24. Hutchison, K. D., J. K. Roskovensky, J. M. Jackson, A. K. Heidinger, T. J. Kopp, M. J. Pavolonis, and R. Frey, 2005: Automated cloud detection and classification of data collected by the Visible Infrared Imager Radiometer Suite (VIIRS). Int. J. Remote Sens., 26, 4681–4706.CrossRefGoogle Scholar
  25. Ishida, H., and T. Y. Nakajima, 2009: Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager. J. Geophys. Res.: Atmos., 114, D07206, doi: 10.1029/2008JD010710.CrossRefGoogle Scholar
  26. Ishida, H., T. Y. Nakjima, T. Yokota, N. Kikuchi, and H. Watanabe, 2011: Investigation of GOSAT TANSO-CAI cloud screening ability through an intersatellite comparison. J. Appl. Meteor. Climatol., 50, 1571–1586.CrossRefGoogle Scholar
  27. Karlsson, K.-G., and A. Dybbroe, 2010: Evaluation of Arctic cloud products from the EUMETSAT Climate Monitoring Satellite Application Facility based on CALIPSO-CALIOP observations. Atmos. Chem. Phys., 10, 1789–1807.CrossRefGoogle Scholar
  28. Kriebel, K. T., R. W. Saunders, and G. Gesell, 1989: Optical properties of clouds derived from fully cloudy AVHRR pixels. Beitr. Phys. Atmos., 62, 165–171.Google Scholar
  29. Kriebel, K. T., G. Gesell, M. Kästner, and H. Mannstein, 2003: The cloud analysis tool APOLLO: Improvements and validations. Int. J. Remote Sens., 24, 2389–2408.CrossRefGoogle Scholar
  30. Kuze, A., H. Suto, M. Nakajima, and T. Hamazaki, 2009: Thermal and near infrared sensor for carbon observation Fouriertransform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt., 48, 6716–6733.CrossRefGoogle Scholar
  31. Liu, Y., and Coauthors, 2013: Development of Chinese carbon dioxide satellite (TanSat). EGU General Assembly, Vienna, Austria, 157–189.Google Scholar
  32. Le Quéré, C., and Coauthors, 2009: Trends in the sources and sinks of carbon dioxide. Nature Geo., 2, 831–836.CrossRefGoogle Scholar
  33. Nakajima, T. Y., T. Tsuchiya, H. Ishida, T. N. Matsui, and H. Shimoda, 2011: Cloud detection performance of spaceborne visible-to-infrared multispectral imagers. Appl. Opt., 50, 2601–2616.CrossRefGoogle Scholar
  34. Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459–473.CrossRefGoogle Scholar
  35. Reuter, M., M. Buchwitz, O. Schneising, J. Heymann, H. Bovensmann, and J. P. Burrows, 2010: A method for improved SCIAMACHY CO2 retrieval in the presence of optically thin clouds. Atmospheric Measurement Techniques, 3, 209–232.CrossRefGoogle Scholar
  36. Riggs, G. A., and D. K. Hall, 2004: Snow and cloud discrimination factors in the MODIS snow algorithm. Preprints, 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, 3714–3716.Google Scholar
  37. Rossow, W. B., 1989: Measuring cloud properties from space: A review. J. Climate, 2, 201–213.CrossRefGoogle Scholar
  38. Rossow, W. B., and L. C. Garder, 1993: Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Climate, 6, 2341–2369.CrossRefGoogle Scholar
  39. Rossow, W. B., L. C. Garder, and A. A. Lacis, 1989: Global, seasonal cloud variations from satellite radiance measurements. Part I: Sensitivity of analysis. J. Climate, 2, 419–458.Google Scholar
  40. Saunders, R.W., and K. T. Kriebel, 1988: An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens., 9, 123–150.CrossRefGoogle Scholar
  41. Sèze, G., and W. B. Rossow, 1991: Time-cumulated visible and infrared radiance histograms used as descriptors of surface and cloud variations. Int. J. Remote Sens., 12, 877–920.CrossRefGoogle Scholar
  42. Shi, G. M., C. C. Li, and T. Ren, 2014: Sensitivity analysis of single-angle polarization reflectance observed by satellite. Chin. Sci. Bull., 59, 1519–1528.CrossRefGoogle Scholar
  43. Solomon, S., G.-K. Plattner, R. Knutti, and P. Friedlingstein, 2009: Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America, 106, 1704–1709.CrossRefGoogle Scholar
  44. Stowe, L. L., S. K. Vemury, and A. V. Rao, 1994: AVHRR clearsky radiation data sets at NOAA/NESDIS. Advances in Space Research, 14, 113–116.CrossRefGoogle Scholar
  45. Stowe, L. L., E. P. McClain, R. Carey, P. Pellegrino, G. G. Gutman, P. Davis, C. Long, and S. Hart, 1991: Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data. Advances in Space Research, 11, 51–54.CrossRefGoogle Scholar
  46. Taylor, T. E., and Coauthors, 2016: Orbiting Carbon Observatory- 2 (OCO-2) cloud screening algorithms: validation against collocated MODIS and CALIOP data. Atmospheric Measurement Techniques, 9, 973–989.CrossRefGoogle Scholar
  47. Vogel, S. W., 2002: Usage of high-resolution Landsat 7 band 8 for single-band snow-cover classification. Annals of Glaciology, 34, 53–57.CrossRefGoogle Scholar
  48. Wang, X., W. Li, Y. Zhu, and B. Zhao, 2012: Improved cloud mask algorithm for FY-3A/VIRR data over the northwest region of China. Atmospheric Measurement Techniques, 5, 8189–8222.CrossRefGoogle Scholar
  49. Yokota, T., Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H.Watanabe, and S. Maksyutov, 2009: Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results. Scientific Online Letters on the Atmosphere: SOLA, 5, 160–163.Google Scholar
  50. Yoshida, Y., and Coauthors, 2013: Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data. Atmospheric Measurement Techniques, 6, 1533–1547.CrossRefGoogle Scholar

Copyright information

© Authors 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Xi Wang
    • 1
    • 2
  • Zheng Guo
    • 2
  • Yipeng Huang
    • 1
  • Hongjie Fan
    • 1
  • Wanbiao Li
    • 1
    Email author
  1. 1.Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of PhysicsPeking UniversityBeijingChina
  2. 2.National Satellite Meteorological CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations