Advances in Atmospheric Sciences

, Volume 34, Issue 1, pp 79–87 | Cite as

Comparison between the response of the Northwest Pacific Ocean and the South China Sea to Typhoon Megi (2010)

Original Paper
  • 40 Downloads

Abstract

The upper-ocean responses to Typhoon Megi (2010) are investigated using data from ARGO floats and the satellite TMI. The experiments are conducted using a three-dimensional Princeton Ocean Model (POM) to assess the storm, which affected the Northwest Pacific Ocean (NWP) and the South China Sea (SCS). Results show that the upwelling and entrainment experiment together account for 93% of the SST anomalies, where typhoon-induced upwelling may cause strong ocean cooling. In addition, the anomalous SST cooling is stronger in the SCS than in the NWP. The most striking feature of the ocean response is the presence of a two-layer inertial wave in the SCS—a feature that is absent in the NWP. The near-inertial oscillations can be generated as typhoon wakes, which have maximum flow velocity in the surface mixed layer and may last for a few days, after the typhoon’s passage. Along the typhoon tracks, the horizontal currents in the upper ocean show a series of alternating negative and positive anomalies emanating from the typhoon.

Keywords

typhoon South China Sea Northwest Pacific upwelling entrainment near-inertial oscillation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonov, J. A., R. A. Locarnini, T. P. Boyer, H. E. Garcia, and A. V. Mishonov, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, Levitus, S, Ed., U.S. Government Printing Office, Washington, D.C., 182 pp.Google Scholar
  2. Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane-ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917–946, doi: 10.1175/1520-0493(2000)128<0917: RCSOHO>2.0.CO;2.CrossRefGoogle Scholar
  3. Chang, S.W., and R. A. Anthes, 1979: The mutual response of the tropical cyclone and the ocean. J. Phys. Oceanogr., 9, 128–135, doi: 10.1175/1520-0485(1979)009<0128:TMROTT>2.0.CO;2.CrossRefGoogle Scholar
  4. Chen, X. Y., D. L. Pan, X. Q. He, Y. Bai, and D. F. Wang, 2012: Upper ocean responses to category 5 typhoon Megi in the western north Pacific. Acta Oceanologica Sinica, 31(1), 51–58.CrossRefGoogle Scholar
  5. Chiang, T.-L., C.-R. Wu, and L.-Y. Oey, 2011: Typhoon Kai-Tak: An ocean’s perfect storm. J. Phys. Oceanogr., 41, 221–233.CrossRefGoogle Scholar
  6. Choi, Y., K.-S. Yun, K.-J. Ha, K.-Y. Kim, S.-J. Yoon, and J. C. L. Chan, 2013: Effects of asymmetric SST distribution on straight-moving typhoon Ewiniar (2006) and recurving typhoon Maemi (2003). Mon. Wea. Rev., 141, 3950–3967, doi: 10.1175/MWR-D-12-00207.1.CrossRefGoogle Scholar
  7. Chu, P. C., J. M. Veneziano, C. W. Fan, M. J. Carron, and W. T. Liu, 2000: Response of the south China sea to tropical cyclone Ernie 1996. J. Geophys. Res., 105(C6), 13991–14009.CrossRefGoogle Scholar
  8. Da Silva, A., A. C. Young, and S. Levitus, 1994: Atlas of Surface Marine Data 1994. NOAA Atlas NESDIS 9, U.S. Department of Commerce, NOAA, NESDIS, 308 pp.Google Scholar
  9. Elsberry, R. L., T. Fraim, and R. N. Trapnell, 1976: A mixed layer model of the oceanic thermal response to hurricanes. J. Geophys. Res., 81, 1153–1162.CrossRefGoogle Scholar
  10. Elsner, J. B., S. E. Strazzo, T. H. Jagger, T. LaRow, and M. Zhao, 2013: Sensitivity of limiting hurricane intensity to SST in the Atlantic from observations and GCMs. J. Climate, 26, 5949–5957, doi: 10.1175/JCLI-D-12-00433.1CrossRefGoogle Scholar
  11. Fisher, E. L., 1958: Hurricanes and the sea-surface temperature field. J. Meteor., 15, 328–333.CrossRefGoogle Scholar
  12. Garrett, C., 2001: What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum. J. Phys. Oceanogr., 31(4), 962–971.CrossRefGoogle Scholar
  13. Geisler, J. E., 1970: Linear theory of the response of a two layer ocean to a moving hurricane. Geophys. Fluid Dyn., 1, 249–272.CrossRefGoogle Scholar
  14. Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 1129–1151.CrossRefGoogle Scholar
  15. Gjevik, B., 1991: Simulations of shelf sea response due to travelling storms. Cont. Shelf Res., 11(2), 136–166.CrossRefGoogle Scholar
  16. Gjevik, B., and M. A. Merrifield, 1993: Shelf-sea response to tropical storms along the west coast of Mexico. Cont. Shelf Res., 13(1), 25–47.CrossRefGoogle Scholar
  17. Greatbatch, R. J., 1985: On the role played by upwelling of water in lowering sea surface temperatures during the passage of a storm. J. Geophys. Res., 20, 11751–11755.CrossRefGoogle Scholar
  18. Guan, S. D., W. Zhao, J. Huthnance, J. W. Tian, and J. H. Wang, 2014: Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea, J. Geophys. Res., 119, 3134–3157, doi: 10.1002/2013JC009661.CrossRefGoogle Scholar
  19. Halpern, D., 1974: Observations of the deepening of the wind-mixed layer in the northeast Pacific Ocean. J. Phys. Oceanogr., 4, 454–466.CrossRefGoogle Scholar
  20. Kalnay, E, and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–470.CrossRefGoogle Scholar
  21. Ko, D. S., S.-Y. Chao, C.-C. Wu, and I.-I. Lin, 2014: Impacts of typhoon Megi (2010) on the South China Sea. J. Geophys. Res., 119, 4474–4489, doi: 10.1002/2013JC009785.CrossRefGoogle Scholar
  22. Large, W. G., and G. B. Crawford, 1995: Observations and simulations of upper-ocean response to wind events during the Ocean Storms Experiment, J. Phys. Oceanogr., 25, 2831–2852.CrossRefGoogle Scholar
  23. Leiper, D. F., 1967: Observed ocean conditions and hurricane Hilda, 1964. J. Atmos. Sci., 24, 182–196.CrossRefGoogle Scholar
  24. Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Professional Paper No. 13, 191 pp.Google Scholar
  25. Lin, I.-I., 2012: Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. J. Geophys. Res., 117, C03039, doi: 10.1029/2011JC007626.Google Scholar
  26. Lin, I.-I., and Coauthors, 2003a: New evidence for enhanced ocean primary production triggered by tropical cyclone, Geophys. Res. Lett., 30(13), 1718, doi: 10.1029/2003GL017141.Google Scholar
  27. Lin, I.-I., W. T. Liu, C.-C. Wu, J. C. H. Chiang, and C.-H. Sui, 2003b: Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys. Res. Lett., 30, 1131, doi: 10.1029/2002GL015674.CrossRefGoogle Scholar
  28. Liu L., J. F. Fei, X. P. Cheng, and X. G. Huang, 2013: Effect of wind-current interaction on ocean response during Typhoon KAEMI (2006). Science China Earth Sciences, 56(3), 418–433.CrossRefGoogle Scholar
  29. Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, L. Levitus, Ed., U.S. Government Printing Office, Washington, D.C., 182 pp.Google Scholar
  30. Mei, W., and C. Pasquero, 2013: Spatial and temporal characterization of sea surface temperature response to tropical cyclones. J. Climate, 26, 3745–3765, doi: 10.1175/JCLI-D-12-00125.1.CrossRefGoogle Scholar
  31. Mei, W., M. Lie, I.-I. Lin, and S.-P. Xie, 2015b: Tropical cycloneinduced ocean response: A comparative study of the South China Sea and tropical Northwest Pacific. J. Climate, 28(15), 5952–5968, doi: 10.1175/JCLI-D-14-00651.1.CrossRefGoogle Scholar
  32. Mei, W., S.-P. Xie, M. Zhao, and Y. Q. Wang, 2015a: Forced and internal variability of tropical cyclone track density in the western North Pacific. J. Climate, 28, 143–167, doi: 10.1175/JCLI-D-14-00164.1.CrossRefGoogle Scholar
  33. Miller, B. J., 1964: A study of the filling of Hurricane Donna (1960) over land. Mon. Wea. Rev., 92, 389–406.CrossRefGoogle Scholar
  34. Millot, C., and M. Crépon, 1981: Inertial oscillations on the continental shelf of the gulf of lions-observations and theory. J. Phys. Oceanogr., 11, 639–657, doi: 10.1175/1520-0485 (1981)011<0639:IOOTCS>2.0.CO;2.CrossRefGoogle Scholar
  35. Morey, S. L., M. A. Bourassa, D. S. Dukhovskoy, and J. J. O’Brien, 2006: Modeling studies of the upper ocean response to a tropical cyclone. Ocean Dynamics, 56, 594–606, doi: 10.1007/s10236-006-0085-y.CrossRefGoogle Scholar
  36. O’Brien, J. J., 1967: The non-linear response of a two-layer, baroclinic ocean to a stationary, axially-symmetric hurricane: Part II. Upwelling and mixing induced by momentum transfer. J. Atmos. Sci., 24, 208–215.Google Scholar
  37. O’Brien, J. J., and R. O. Reid, 1967: The non-linear response of a two-layer, baroclinic ocean to a stationary, axially-symmetric hurricane: Part I. Upwelling induced by momentum transfer. J. Atmos. Sci., 24, 197–207.Google Scholar
  38. Oey, L.-Y., M. Inoue, R. Lai, X.-H. Lin, S. E. Welsh, and L. J. Rouse, 2008: Stalling of near-inertial waves in a cyclone, Geophys. Res. Lett., 35, L12604, doi: 10.1029/2008GL034273.CrossRefGoogle Scholar
  39. Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175.CrossRefGoogle Scholar
  40. Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233–260.CrossRefGoogle Scholar
  41. Sakaida, F., H. Kawamura, and Y. Toba, 1998: Sea surface cooling caused by typhoons in the Tohoku Area in August 1989. J. Geophys. Res., 103(C1), 1053–1065.CrossRefGoogle Scholar
  42. Shang, S. L., and Coauthors, 2008: Changes of temperature and bio-optical properties in the South China Sea in response to typhoon Lingling, 2001. Geophys. Res. Lett., 35, L10602, doi: 10.1029/2008GL033502.CrossRefGoogle Scholar
  43. Shay, L. K., and R. L. Elsberry, 1987: Near-inertial ocean current response to hurricane Frederic. J. Phys. Oceanogr., 17, 1249–1269.CrossRefGoogle Scholar
  44. Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins, and R. L. Elsberry, 1992: Upper ocean response to Hurricane Gilbert. J. Geophys. Res., 97, 20227–20248.CrossRefGoogle Scholar
  45. Slutz, R. J., S. J. Lubker, J. D. Hiscox, S. D. Woodruff, R. L. Jenne, D. H. Joseph, P. M. Steurer, and J. D. Elms, 1985: COADS (comprehensive ocean-atmosphere data set), Release 1. NOAA Environmental Research Laboratories, CIRES University of Colorado, 300 pp.Google Scholar
  46. Stramma, L., P. Cornillon, and J. F. Price, 1986: Satellite observations of sea surface cooling by hurricanes. J. Geophys. Res., 91(C4), 5031–5035.CrossRefGoogle Scholar
  47. Tsai, Y., C.-S. Chern, and J. Wang, 2012: Numerical study of typhoon-induced ocean thermal content variations on the northern shelf of the South China Sea. Cont. Shelf Res., 42, 64–77.CrossRefGoogle Scholar
  48. Tseng, Y.-H., S. Jan, D. E. Dietrich, I.-I. Lin, Y.-T. Chang, and T.-Y. Tang, 2010: Modeled oceanic response and sea surface cooling to typhoon Kai-Tak. Terrestrial, Atmospheric and Oceanic Sciences, 21, 85–98, doi: 10.3319/TAO.2009.06.08.02(IWNOP).CrossRefGoogle Scholar
  49. Wang, J. C., J. Zhang, and J. G. Yang, 2014: Numerical simulation and preliminary analysis on ocean waves during Typhoon Nesat in South China Sea and adjacent areas. Chinese Journal of Oceanology and Limnology, 2014, 32(3), 665–680.CrossRefGoogle Scholar
  50. Yablonsky, R. M., and I. Ginis, 2009: Limitation of onedimensional ocean models for coupled hurricane-ocean model forecasts. Mon. Wea. Rev., 137, 4410–4419, doi: 10.1175/2009MWR2863.1CrossRefGoogle Scholar
  51. Yang, Y.-J., L. Sun, A.-M. Duan, Y.-B. Li, Y.-F. Fu, Y.-F. Yan, Z.- Q. Wang, and T. Xian, 2012: Impacts of the binary typhoons on upper ocean environments in November 2007. Journal of Applied Remote Sensing, 6, 063583, doi: 10.1117/1.JRS.6.063583.Google Scholar
  52. Yun, K.-S., J. C. L. Chan, and K.-J. Ha, 2012: Effects of SST magnitude and gradient on typhoon tracks around East Asia: a case study for Typhoon Maemi (2003). Atmospheric Research, 109-110, 36–51.CrossRefGoogle Scholar
  53. Zedler, S. E., T. D. Dickey, S. C. Doney, J. F. Price, X. Yu, and G. L. Mellor, 2002: Analyses and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed Mooring site: 13–23 August 1995. J. Geophys. Res., 107(C12), 25-1–25-29, doi: 10.1029/2001JC000969.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Physical Oceanography Laboratory, College of Oceanic and Atmospheric SciencesOcean University of ChinaQingdaoChina
  2. 2.Hunan Provincial Meteorological StationChangshaChina

Personalised recommendations