Advances in Atmospheric Sciences

, Volume 34, Issue 4, pp 559–570 | Cite as

Analysis of a vortex precipitation event over Southwest China using AIRS and in situ measurements

  • Chengcheng Ni
  • Guoping Li
  • Xiaozhen Xiong
Original Paper


A strong precipitation event caused by the southwest vortex (SWV), which affected Sichuan Province and Chongqing municipality in Southwest China on 10–14 July 2012, is investigated. The SWV is examined using satellite observations from AIRS (Atmospheric Infrared Sounder), in situ measurements from the SWV intensive observation campaign, and MICAPS (Marine Interactive Computer-Aided Provisioning System) data. Analysis of this precipitation process revealed that: (1) heavy rain occurred during the development phase, and cloud water content increased significantly after the dissipation of the SWV; (2) the area with low outgoing longwave radiation values from AIRS correlated well with the SWV; (3) variation of the temperature of brightness blackbody (TBB) from AIRS reflected the evolution of the SWV, and the values of TBB reduced significantly during the SWV’s development; and (4) strong temperature and water vapor inversions were noted during the development of the SWV. The moisture profile displayed large vertical variation during the SWV’s puissant phase, with the moisture inversion occurring at low levels. The moisture content during the receding phase was significantly reduced compared with that during the developing and puissant phases. The vertical flux of vapor divergence explained the variation of the moisture profile. These results also indicate the potential for using AIRS products in studying severe weather over the Tibetan Plateau and its surroundings, where in situ measurements are sparse.

Key words

precipitation event AIRS southwest vortex temperature profile moisture profile 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to express their sincere thanks to the Plateau Meteorological Data Centre associated with the Chengdu Institute of Plateau Meteorology, CMA, which supplied the intensive sounding data for the SWV observation experiment. This work was supported by the Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201206042), and the National Natural Science Foundation of China (Grant No. 41675057, 91337215).


  1. Chang, C. P., L. Yi, and G. T. J. Chen, 2000: A numerical simulation of vortex development during the 1992 east Asian summer monsoon onset using the navy’s regional model. Mon. Wea. Rev., 128(6), 1604–1631.CrossRefGoogle Scholar
  2. Chen, L. F., and K. Gao, 2007: The structure of Meiyu Front and the relationship between the front and the vortex disturbance along it. Chinese J. Atmos. Sci., 31(5), 863–875. (in Chinese)Google Scholar
  3. Cao, Y., C. J. Yue, and S. W. Shou, 2013: Statistical synthesis on relationship between the number of convective core and the character of TBB within the tropical cyclone circulation and its intensity. Journal of Tropical Meteorology, 29(3), 381–392. (in Chinese)Google Scholar
  4. Ding, W. Y., Q. L. Wan, Y. Y. Huang, Z. T. Chen, and C. Z. Zhang, 2011: MODIS brightness temperature data assimilation under cloudy conditions II: Impacts on rainstorm forecasting. Journal of Tropical Meteorology, 17(3), 221–230, doi: 10.3969/j.issn.1006-8775.2011.03.004.Google Scholar
  5. Divakarla, M. G., C. D. Barnet, M. D. Goldberg, L. M. Mcmillin, E. Maddy, W. Wolf, L. H. Zhou, and X. P. Liu, 2006: Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res., 111, D09S15, doi: 10.1029/2005 JD006116.CrossRefGoogle Scholar
  6. Dong, X. M., and S. P. Tian, 1986: Introduction of Diagnostic Analysis Method of Synoptic. Meteorology Press, 164 pp. (in Chinese)Google Scholar
  7. Fei, Z. P., Y. G. Zheng, Y. Zhang, and H. Q. Wang, 2008: MCS census and modification of MCS definition based on geostationary satellite infrared imagery. Journal of Applied Meteorological Science, 19(1), 82–90. (in Chinese)Google Scholar
  8. Fu, S. M., J. H. Sun, S. X. Zhao, and W. L. Li, 2011: The energy budget of a southwest vortex with heavy rainfall over south China. Adv. Atmos. Sci., 28(3), 709–724, doi: 10.1007/s00376-010-0026-z.CrossRefGoogle Scholar
  9. Fu, S. M., W. L. Li, J. H. Sun, J. P. Zhang, and Y. H. Zhang, 2015: Universal evolution mechanisms and energy conversion characteristics of long-lived mesoscale vortices over the Sichuan Basin. Atmospheric Science Letters, 16(2), 127–134.CrossRefGoogle Scholar
  10. Gao, S. T., and F. Ping, 2005: An experiment study of lee vortex with large topography forcing. Chinese Science Bulletin, 50, 248–255.CrossRefGoogle Scholar
  11. Gettelman, A., D. E. Kinnison, T. J. Dunkerton, and G. P. Brasseur, 2004: Impact of monsoon circulations on the upper troposphere and lower stratosphere. J. Geophys. Res., 109(D22), doi: 10.1029/2004JD004878.Google Scholar
  12. Goldberg, M. D., Y. Qu, L. M. McMillin, W. Wolf, L. H. Zhou, and M. Divakarla, 2003: AIRS near-real-time products and algorithms in support of operational numerical weather prediction. IEEE Trans. Geosci. Remote Sens., 41(2), 379–389.CrossRefGoogle Scholar
  13. He, G. B., 2012: Review of the southwest vortex research. Meteorological Monthly, 38(2), 155–163. (in Chinese)Google Scholar
  14. Jones, T. A., and D. J. Stensrud, 2012: Assimilating AIRS temperature and mixing ratio profiles using an ensemble Kalman filter approach for convective-scale forecasts. Wea. Forecasting, 27(3), 541–564.CrossRefGoogle Scholar
  15. Kuo, Y. H., L. S. Cheng, and R. A. Anthes, 1986: Mesoscale analyses of the Sichuan flood catastrophe, 11–15 July 1981. Mon. Wea. Rev., 114(11), 1984–2003.CrossRefGoogle Scholar
  16. Kuo, Y. H., L. S. Cheng, and J. W. Bao, 1988: Numerical simulation of the 1981 Sichuan flood. I: Evolution of a mesoscale southwest vortex. Mon. Wea. Rev., 116(12), 2841–2504.CrossRefGoogle Scholar
  17. Li, G. P., 2007: Dynamic Meteorology of the Tibetan Plateau. 2nd ed., China Meteorological Press, 271 pp. (in Chinese)Google Scholar
  18. Li, G. P., and J. Deng, 2013: Atmospheric water monitoring by using ground-based GPS during heavy rains produced by TPV and SWV. Advances in Meteorology, 2013, Article ID 793957, doi: 10.1155/2013/793957.Google Scholar
  19. Li, J., J. Du, D.-L. Zhang, C. G. Cui, and Y. S. Liao, 2014: Ensemble-based analysis and sensitivity of mesoscale forecasts of a vortex over southwest China. Quart. J. Roy. Meteor. Soc., 140, 766–782.CrossRefGoogle Scholar
  20. Li, Y. Q., X. B. Zhao, L. H. Zhang, and C. C. Zhou, 2012: The intensive observation scientific experiment of southwest China vortex in the summer of 2012. Plateau and Mountain Meteorology Research, 32(4), 1–8. (in Chinese)Google Scholar
  21. Li, Y. W., and S. J. Niu, 2012: The formation and precipitation mechanism of two ordered patterns of embedded convection in stratiform cloud. Science China Earth Sciences, 55, 113–125, doi: 10.1007/s11430-011-4278-y.CrossRefGoogle Scholar
  22. Ni, C. C., G. P. Li, and X. Z. Xiong, 2013: Validation of the applicability of AIRS data in Sichuan-Tibet region of China. Journal of Mountain Science, 31(6), 656–663. (in Chinese)Google Scholar
  23. Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527–530.Google Scholar
  24. Qin, J., K. Yang, T. Koike, H. Lu, Y. M. Ma, and X. D. Xu, 2012: Evaluation of AIRS precipitable water vapor against groundbased GPS measurements over the Tibetan Plateau and its surroundings. J. Meteor. Soc. Japan, 90C, 87–98.CrossRefGoogle Scholar
  25. Randel, W. J., and M. Park, 2006: Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res., 111, D12314, doi: 10.1029/2005JD006490.CrossRefGoogle Scholar
  26. Reale, O., J. Susskind, R. Rosenberg, E. Brin, E. Liu, L. P. Riishojgaard, J. Terry, and J. C. Jusem, 2008: Improving forecast skill by assimilation of quality-controlled AIRS temperature retrievals under partially cloudy conditions. Geophys. Res. Lett., 35, L08809, doi: 10.1029/2007GL033002.CrossRefGoogle Scholar
  27. Reale, O., K. M. Lau, J. Susskind, and R. Rosenberg, 2012: AIRS impact on analysis and forecast of an extreme rainfall event (Indus River Valley, Pakistan, 2010) with a global data assimilation and forecast system. Geophys. Res., 117, D08103, doi: 10.1029/2011JD017093.CrossRefGoogle Scholar
  28. Sheng, P. X., J. T. Mao, J. G. Li, A. C. Zhang, J. G. Sang, and N. X. Pan, 2003: The Atmospheric Physics. Peking University Press, 522 pp. (in Chinese)Google Scholar
  29. Singh, R., P. K. Pal, C. M. Kishtawal, and P. C. Joshi, 2008: Impact of Atmospheric Infrared Sounder data on the numerical simulation of a historical Mumbai rain event. Wea. Forecasting, 23(5), 891–913.CrossRefGoogle Scholar
  30. Singh, R., C. M. Kishtawal, and P. K. Pal, 2011: Use of Atmospheric Infrared Sounder clear-sky and cloud-cleared radiances in the weather research and forecasting 3DVAR assimilation system for mesoscale weather predictions over the Indian region. J. Geophys. Res., 116, D22116, doi: 10.1029/2011JD016379.Google Scholar
  31. Su, Z. J., W. G. Liu, G. H. Wang, C. H. Xu, and L. J. Wang, 2003: Microphysical characteristics of a precipitation process in Qinghai province. Journal of Applied Meteorological Science, 14(S1), 27–35. (in Chinese)Google Scholar
  32. Susskind, J., J. M. Blaisdell, L. Iredell, and F. Keita, 2011: Improved temperature sounding and quality control methodology using AIRS/AMSU data: The AIRS Science Team version 5 retrieval algorithm. IEEE Trans. Geosci. Remote Sens., 49, 883–907, doi: 10.1109/TGRS.2010.2070508.CrossRefGoogle Scholar
  33. Tao, S. Y., and Y. H. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62(1), 23–30.CrossRefGoogle Scholar
  34. Tian, B. J., D. E. Waliser, E. J. Fetzer, B. H. Lambrigtsen, Y. L. Yung, and B. Wang, 2006: Vertical moist thermodynamic structure and spatial-temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63(10), 2462–2485.CrossRefGoogle Scholar
  35. Wang, B., and I. Orlanski, 1987: Study of a heavy rain vortex formed over the eastern flank of the Tibetan Plateau. Mon. Wea. Rev., 115(7), 1370–1393.CrossRefGoogle Scholar
  36. Wang, Q. W., and Z. M. Tan, 2014: Multi-scale topographic control of southwest vortex formation in Tibetan Plateau region in an idealized simulation. J. Geophys. Res., 119(20), 11543–11561, doi: 10.1002/2014JD021898.Google Scholar
  37. Wang, W., and P. Cheng, 2013: Numerical simulation and diagnostic analysis of heavy rainstorm on 27 July 2012 in north Shaanxi. Transactions of Atmospheric Sciences, 36(2), 174–183. (in Chinese)Google Scholar
  38. Wang, W., Y. H. Kuo, and T. T. Warner, 1993: A diabatically driven mesoscale vortex in the lee of the Tibetan Plateau. Mon. Wea. Rev., 121(9), 2542–2561.CrossRefGoogle Scholar
  39. Zhan, R. F., and J. P. Li, 2008: Validation and Characteristics of upper tropospheric water vapor over the Tibetan Plateau from AIRS satellite retrieval. Chinese J. Atmos. Sci., 32(2), 242–260. (in Chinese)Google Scholar
  40. Zhang, J. P., S. M. Fu, J. H. Sun, X. Y. Shen, and Y. C. Zhang, 2015: A statistical and compositional study on the two types of mesoscale vortices over the Yangtze River Basin. Climatic and Environmental Research, 20(3), 319–336. (in Chinese)Google Scholar
  41. Zhong R., L. H. Zhong, L. J. Hua, and S. D. Feng, 2014: A climatology of the southwest vortex during 1979–2008. Atmospheric and Oceanic Science Letters, 7(6), 577–583.CrossRefGoogle Scholar
  42. Zhou, Y. P., K. M. Lau, O. Reale, and R. Rosenberg, 2010: AIRS impact on precipitation analysis and forecast of tropical cyclones in a global data assimilation and forecast system. Geophys. Res. Lett., 37, L02806, doi: 10.1029/2009GL041494.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Atmospheric SciencesChengdu University of Information TechnologyChengduChina
  2. 2.Meteorological ObservatoryChengdu Meteorological BureauChengduChina
  3. 3.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina
  4. 4.Centre of Satellite Application and ResearchNOAACollege ParkUSA

Personalised recommendations