Advances in Atmospheric Sciences

, Volume 33, Issue 9, pp 1005–1023 | Cite as

Abrupt summer warming and changes in temperature extremes over Northeast Asia since the mid-1990s: Drivers and physical processes

  • Buwen DongEmail author
  • Rowan T. Sutton
  • Wei Chen
  • Xiaodong Liu
  • Riyu Lu
  • Ying Sun
Open Access


This study investigated the drivers and physical processes for the abrupt decadal summer surface warming and increases in hot temperature extremes that occurred over Northeast Asia in the mid-1990s. Observations indicate an abrupt increase in summer mean surface air temperature (SAT) over Northeast Asia since the mid-1990s. Accompanying this abrupt surface warming, significant changes in some temperature extremes, characterized by increases in summer mean daily maximum temperature (Tmax), daily minimum temperature (Tmin), annual hottest day temperature (TXx), and annual warmest night temperature (TNx) were observed. There were also increases in the frequency of summer days (SU) and tropical nights (TR). Atmospheric general circulation model experiments forced by changes in sea surface temperature (SST)/sea ice extent (SIE), anthropogenic greenhouse gas (GHG) concentrations, and anthropogenic aerosol (AA) forcing, relative to the period 1964–93, reproduced the general patterns of observed summer mean SAT changes and associated changes in temperature extremes, although the abrupt decrease in precipitation since the mid-1990s was not simulated. Additional model experiments with different forcings indicated that changes in SST/SIE explained 76% of the area-averaged summer mean surface warming signal over Northeast Asia, while the direct impact of changes in GHG and AA explained the remaining 24% of the surface warming signal. Analysis of physical processes indicated that the direct impact of the changes in AA (through aerosol–radiation and aerosol–cloud interactions), mainly related to the reduction of AA precursor emissions over Europe, played a dominant role in the increase in TXx and a similarly important role as SST/SIE changes in the increase in the frequency of SU over Northeast Asia via AA-induced coupled atmosphere–land surface and cloud feedbacks, rather than through a direct impact of AA changes on cloud condensation nuclei. The modelling results also imply that the abrupt summer surface warming and increases in hot temperature extremes over Northeast Asia since the mid-1990s will probably sustain in the next few decades as GHG concentrations continue to increase and AA precursor emissions over both North America and Europe continue to decrease.

Key words

surface warming temperature extremes global climate model anthropogenic greenhouse gas anthropogenic aerosol SST/SIE Northeast Asia mid-1990s 


  1. Adler, R. F., and Coauthors, 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–Present). Journal of Hydrometeorology, 4, 1147–1167.CrossRefGoogle Scholar
  2. Andrews, T., 2014. Using an AGCM to diagnose historical effective radiative forcing and mechanisms of recent decadal climate change. J. Climate, 27, 1193–1209.CrossRefGoogle Scholar
  3. Bellouin, N., G. W. Mann, M. T. Woodhouse, C. Johnson, K. S. Carslaw, and M. Dalvi, 2013. Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model. Atmospheric Chemistry and Physics, 13, 3027–3044, doi: 10.5194/acp-13-3027-2013.CrossRefGoogle Scholar
  4. Chen, M. Y., P. P. Xie, J. E. Janowiak, and P. A. Arkin, 2002. Global land precipitation: a 50-yr monthly analysis based on gauge observations. Journal of Hydrometeorology, 3, 249–266.CrossRefGoogle Scholar
  5. Chen, W., and R.Y. Lu, 2014. A decadal shift of summer surface air temperature over the Northeast Asia around the mid-1990s. Adv. Atmos. Sci., 31, 735–742, doi: 10.1007/s00376-013-3154-4.CrossRefGoogle Scholar
  6. Christidis, N., and Coauthors, 2013. A new HadGEM3-A-based system for attribution of weather and climate-related extreme events. J. Climate, 26, 2756–2783.CrossRefGoogle Scholar
  7. Cowan, T., and W. Cai, 2011: The impact of Asian and non-Asian anthropogenic aerosols on 20th century Asian summer monsoon. Geophys. Res. Lett., 38, L11703, doi: 10.1029/2011gl047268.Google Scholar
  8. Dai, A. G., K. E. Trenberth, and T. R. Karl, 1999. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 2451–2473.CrossRefGoogle Scholar
  9. Ding, Y. H., Z. Y. Wang, and Y. Sun, 2008. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. International Journal of Climatology, 28, 1139–1161, doi: 10.1002/joc.1615.Google Scholar
  10. Ding, Y. H., Y. Sun, Z. Y. Wang, Y. X. Zhu, and Y. F. Song, 2009. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes. International Journal of Climatology, 29, 1926–1944, doi: 10.1002/joc.1759.CrossRefGoogle Scholar
  11. Donat, M. G., and Coauthors, 2013. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J. Geophys. Res., 118, 2098–2118, doi: 10.1002/jgrd.50150.Google Scholar
  12. Dong, B.-W., and R. Sutton, 2015. Dominant role of greenhouse gas forcing in the recovery of Sahel rainfall. Nature Climate Change, 5, 757–760, doi: 10.1038/nclimate2664.CrossRefGoogle Scholar
  13. Dong, B.-W., J. M. Gregory, and R. T. Sutton, 2009. Understanding land-sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22, 3079–3097.CrossRefGoogle Scholar
  14. Dong, B.-W., R. T. Sutton, E. J. Highwood, and L. J. Wilcox, 2016a. Preferred response of the East Asian summer monsoon to local and non-local anthropogenic sulphur dioxide emissions. Climate Dyn., 46, 1733–1751, doi: 10.1007/s00382-015-2671-5.CrossRefGoogle Scholar
  15. Dong, B.-W., R. T. Sutton, and L. Shaffrey, 2016b: Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over Western Europe. Climate Dyn., doi: 10.1007/s00382–016-3158-8.Google Scholar
  16. Feng, S., and Q. Hu, 2008: How the North Atlantic Multidecadal Oscillation may have influenced the Indian summer monsoon during the past two millennia. Geophys. Res. Lett., 35, L01707, doi: 10.1029/2007GL032484.Google Scholar
  17. Folini, D., and M. Wild, 2015. The effect of aerosols and sea surface temperature on China’s climate in the late twentieth century from ensembles of global climate simulations. J. Geophys. Res., 120, 2261–2279, doi: 10.1002/2014JD022851.Google Scholar
  18. Gao, L. H., Z.W. Yan, and X.W. Quan, 2014a. Observed and SSTforced multidecadal variability in global land surface air temperature. Climate Dyn., 44, 359–369, doi: 10.1007/s00382-014-2121-9.CrossRefGoogle Scholar
  19. Gao, Z. T., Z.-Z. Hu, B. Jha, S. Yang, J. S. Zhu, B. Z. Shen, and R. J. Zhang, 2014b: Variability and predictability of Northeast China climate during 1948–2012. Climate Dyn., 43, 787–804, doi: 10.1007/s00382-013-1944-0.CrossRefGoogle Scholar
  20. Guo, L., E. J. Highwood, L. C. Shaffrey, and A. G. Turner, 2013. The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian summer monsoon. Atmospheric Chemistry and Physics, 13, 1521–1534.CrossRefGoogle Scholar
  21. Han, T. T., H. P. Chen, and H. J. Wang, 2015. Recent changes in summer precipitation in Northeast China and the background circulation. International Journal of Climatology, 35, 4210–4219.CrossRefGoogle Scholar
  22. Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change, Rev. Geophys., 48, RG4004, doi: 10.1029/2010RG000345.Google Scholar
  23. Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 dataset. International Journal of Climatology, 34, 623–642, doi: 10.1002/joc.3711.CrossRefGoogle Scholar
  24. Hewitt, H. T., D. Copsey, I. D. Culverwell, C. M. Harris, R. S. R. Hill, A. B. Keen, A. J. McLaren, and E. C. Hunke, 2011. Design and implementation of the infrastructure of HadGEM3: The next-generation Met Office climate modelling system. Geoscientific Model Development, 4, 223–253.CrossRefGoogle Scholar
  25. Huang, R. H., Y. Liu, and T. Feng, 2013. Interdecadal change of summer precipitation over Eastern China around the late-1990s and associated circulation anomalies, internal dynamical causes. Chinese Science Bulletin, 58, 1339–1349.CrossRefGoogle Scholar
  26. Kalnay, E., and Coauthors, 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472.CrossRefGoogle Scholar
  27. Kamae, Y., H. Shiogama, M. Watanabe, and M. Kimoto, 2014a. Attributing the increase in Northern Hemisphere hot summers since the late 20th century. Geophys. Res. Lett., 41, 5192–5199.CrossRefGoogle Scholar
  28. Kamae, Y., M. Watanabe, M. Kimoto, and H. Shiogama, 2014b. Summertime land–sea thermal contrast and atmospheric circulation over East Asia in a warming climate—Part II: Importance of CO2-induced continental warming. Climate Dyn., 43, 2569–2583, doi: 10.1007/s00382-014-2146-0.CrossRefGoogle Scholar
  29. Kosaka, Y., and S. P. Xie, 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403–407.CrossRefGoogle Scholar
  30. Kühn, T., and Coauthors, 2014. Climate impacts of changing aerosol emissions since 1996. Geophys. Res. Lett., 41, 4711–4718, doi: 10.1002/2014GL060349.Google Scholar
  31. Kwon, M., J.-G. Jhun, and K.-J. Ha, 2007: Decadal change in East Asian summer monsoon circulation in the mid-1990s. Geophys. Res. Lett., 34, L21706, doi: 10.1029/2007GL031977.Google Scholar
  32. Lamarque, J. F., and Coauthors, 2010. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmospheric Chemistry and Physics, 10, 7017–7039.CrossRefGoogle Scholar
  33. Legates, D. R., and C. J. Willmott, 1990a. Mean seasonal and spatial variability in global surface air temperature. Theor. Appl. Climatol., 41, 11–21.CrossRefGoogle Scholar
  34. Legates, D. R., and C. J. Willmott, 1990b. Mean seasonal and spatial variability in gauge-corrected, global precipitation. International Journal of Climatology, 10, 111–127.CrossRefGoogle Scholar
  35. Levine, R. C., and A. G. Turner, 2012. Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases. Climate Dyn., 38, 2167–2190, doi: 10.1007/s00382-011-1096-z.CrossRefGoogle Scholar
  36. Li, J., W. J. Dong, and Z. W. Yan, 2012. Changes of climate extremes of temperature and precipitation in summer in eastern China associated with changes in atmospheric circulation in East Asia during 1960–2008. Chinese Science Bulletin, 57, 1856–1861, doi: 10.1007/s11434-012-4989-2.CrossRefGoogle Scholar
  37. Liu, Y., and J. C. H. Chiang, 2012. Coordinated abrupt weakening of the Eurasian and North African Monsoons in the 1960s and links to extratropical North Atlantic cooling. J. Climate, 25, 3532–3548, doi: 10.1175/JCLI-D-11-00219.1.CrossRefGoogle Scholar
  38. Lu, Z., Q. Zhang, and D. G. Streets, 2011. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmospheric Chemistry and Physics, 11, 9839–9864, doi: 10.5194/acp-11-9839-2011.CrossRefGoogle Scholar
  39. Martin, G. M., S. F. Milton, C. A. Senior, M. E. Brooks, S. Ineson, T. Reichler, and J. Kim, 2010. Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J. Climate, 23, 5933–5957, doi: 10.1175/2010JCLI3541.1.CrossRefGoogle Scholar
  40. Mitchell, J. F. B., C. A. Wilson, and W. M. Cunnington, 1987. On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113, 293–322.CrossRefGoogle Scholar
  41. Mueller, B., and S. I. Seneviratne, 2012. Hot days induced by precipitation deficits at the global scale. Proceedings of the National Academy of Sciences of the United States of America, 109, 12398–12403, doi: 10.1073/pnas.1204330109.CrossRefGoogle Scholar
  42. Nabat, P., S. Somot, M. Mallet, A. Sanchez-Lorenzo, and M. Wild, 2014. Contribution of anthropogenic sulfate aerosols to the changing Euro-Mediterranean climate since 1980. Geophys. Res. Lett., 41, 5605–5611, doi: 10.1002/2014GL060798.CrossRefGoogle Scholar
  43. Qi, L., and Y. Q. Wang, 2012. Changes in the observed trends in extreme temperatures over China around 1990. J. Climate, 25, 5208–5222.CrossRefGoogle Scholar
  44. Qian, C. C., J.-Y. Yu, and G. Chen, 2014: Decadal summer drought frequency in China: the increasing influence of the Atlantic Multi-decadal Oscillation. Environmental Research Letters, 9, 124004.CrossRefGoogle Scholar
  45. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.CrossRefGoogle Scholar
  46. Ren, G. Y., G. L. Feng, and Z. W. Yan, 2010. Progresses in observation studies of climate extremes and changes in mainland China. Climatic and Environmental Research, 15, 337–353. (in Chinese with English abstract)Google Scholar
  47. Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 1309–1313 doi: 10.1126/science.1160606.CrossRefGoogle Scholar
  48. Schubert, S. D., H. L. Wang, R. D. Koster, M. J. Suarez, and P. Y. Groisman, 2014. Northern Eurasian heat waves and droughts. J. Climate, 27, 3169–3207.CrossRefGoogle Scholar
  49. Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Science Reviews, 99, 125–161.CrossRefGoogle Scholar
  50. Seneviratne, S. I., M. G. Donat, B. Mueller, and L. V. Alexander, 2014. No pause in the increase of hot temperature extremes. Nature Climate Change, 4, 161–163, doi: 10.1038/nclimate2145.CrossRefGoogle Scholar
  51. Shen, X. J., B. H. Liu, G. D. Li, Z. F. Wu, Y. H. Jin, P. J. Yu, and D. W. Zhou, 2014. Spatiotemporal change of diurnal temperature range and its relationship with sunshine duration and precipitation in China. J. Geophys. Res., 119, 13163–13179, doi: 10.1002/2014JD022326.Google Scholar
  52. Smith, S. J., J. van Aardenne, Z. Klimont, R. J. Andres, A. Volke, and S. D. Arias, 2011. Anthropogenic sulfur dioxide emissions: 1850–2005. Atmospheric Chemistry and Physics, 11, 1101–1116, doi: 10.5194/acp-11-1101-2011.CrossRefGoogle Scholar
  53. Song, F. F., T. J. Zhou, and Y. Qian, 2014. Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596–603, doi: 10.1002/2013GL058705.CrossRefGoogle Scholar
  54. Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013. The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 2711–2744, doi: 10.1007/s00382-012-1607-6.Google Scholar
  55. Steinman, B. A., M. E. Mann, and S. K. Miller, 2015. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347, 988–991, doi: 10.1126/science.1257856.CrossRefGoogle Scholar
  56. Sun, Y., X. B. Zhang, F. W. Zwiers, L. C. Song, H. Wan, T. Hu, H. Yin, and G. Y. Ren, 2014. Rapid increase in the risk of extreme summer heat in Eastern China. Nature Climate Change, 4, 1082–1085, doi: 10.1038/nclimate2410.CrossRefGoogle Scholar
  57. Tang, Q. H., and G. Y. Leng, 2012: Damped summer warming accompanied with cloud cover increase over Eurasia from 1982 to 2009. Environmental Research Letters, 7, 014004, doi: 10.1088/1748-9326/7/1/014004.CrossRefGoogle Scholar
  58. Tang, Q. H., G. Y. Leng, and P. Y. Groisman, 2012. European hot summers associated with a reduction of cloudiness. J. Climate, 25, 3637–3644.CrossRefGoogle Scholar
  59. Trenberth, K. E., J. T. Fasullo, G. Branstator, and A. S. Phillips, 2014. Seasonal aspects of the recent pause in surface warming. Nature Climate Change, 4, 911–916, doi: 10.1038/nclimate2341.CrossRefGoogle Scholar
  60. Twomey, S., 1977. The influence of pollution on the shortwave albedo of clouds. Journal of Atmospheric Sciences, 34, 1149–1154.CrossRefGoogle Scholar
  61. Ueda, H., Y. Kamae, M. Hayasaki, A. Kitoh, S. Watanabe, Y. Miki, and A. Kumai, 2015: Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon. Nature Communications, 6, 8854, doi: 10.1038/ncomms9854.CrossRefGoogle Scholar
  62. Urabe, Y., and S. Maeda, 2014. The relationship between Japan’s recent temperature and decadal variability. SOLA, 10, 176–179, doi: 10.2151/sola.2014-037.CrossRefGoogle Scholar
  63. Wang, H. J., and Coauthors, 2012. Extreme climate in China: Facts, simulation and projection. Meteor. Z., 21, 279–304.CrossRefGoogle Scholar
  64. Wang, T., H. J. Wang, O. H. Otterå, Y. Q. Gao, L. L. Suo, T. Furevik, and L. Yu, 2013. Anthropogenic agent implicated as a prime driver of shift in precipitation in eastern China in the late 1970s. Atmospheric Chemistry and Physics, 13, 12433–12450, doi: 10.5194/acpd-13-11997-2013.CrossRefGoogle Scholar
  65. Wei, K., and W. Chen, 2011. An abrupt increase in the summer high temperature extreme days across China in the mid- 1990s. Adv. Atmos. Sci., 28, 1023–1029.CrossRefGoogle Scholar
  66. Wen, Q. H., X. B. Zhang, Y. Xu, and B. Wang, 2013. Detecting human influence on extreme temperatures in China. Geophys. Res. Lett., 40, 1171–1176, doi: 10.1002/grl.50285.CrossRefGoogle Scholar
  67. Wilcox, L. J., B. Dong, R. T. Sutton, and E. J. Highwood, 2015. The 2014 hot, dry summer in northeast Asia. Bull. Amer. Metero. Soc., 96, S105–S110.CrossRefGoogle Scholar
  68. Yang, S. L., J. M. Feng, W. J. Dong, and J. M. Chou, 2014: Analyses of extreme climate events over China based on CMIP5 historical and future simulations. Adv. Atmos. Sci., 31, 1209–1220, doi: 10.1007/s00376-014-3119-2.CrossRefGoogle Scholar
  69. You, Q. L., J. Z. Min, Y. Jiao, M. Sillanpää, and S. C. Kang, 2015. Observed trend of diurnal temperature range in the Tibetan Plateau in recent decades. International Journal of Climatology, 36, 2633–2643, doi: 10.1002/joc.4517.CrossRefGoogle Scholar
  70. Zhang, L. X., and T. J. Zhou, 2015. Drought over East Asia: a review. J. Climate, 28, 3375–3399, doi: 10.1175/JCLI-D-14-00259.1.CrossRefGoogle Scholar
  71. Zhao, P., S. Yang, and R. C. Yu, 2010. Long-term changes in rainfall over eastern China and large-scale atmospheric circulation associated with recent global warming. J. Climate, 23, 1544–1562, doi: 10.1175/2009JCLI2660.1.CrossRefGoogle Scholar
  72. Zhao, P., P. Jones, L. J. Cao, Z. W. Yan, S. Y. Zha, Y. N. Zhu, Y. Yu, and G. L. Tang, 2014. Trend of surface air temperature in eastern China and associated large-scale climate variability over the last 100 years. J. Climate, 27, 4693–4703, doi: 10.1175/JCLI-D-13-00397.1.CrossRefGoogle Scholar

Copyright information

© Science Press 2016

Authors and Affiliations

  • Buwen Dong
    • 1
    Email author
  • Rowan T. Sutton
    • 1
  • Wei Chen
    • 2
  • Xiaodong Liu
    • 3
  • Riyu Lu
    • 2
  • Ying Sun
    • 4
  1. 1.National Centre for Atmospheric ScienceDepartment of Meteorology, University of ReadingReadingUK
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid DynamicsInstitute of Atmospheric Physics, Chinese Academy of SciencesBeijingChina
  3. 3.Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  4. 4.National Climate CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations