Advances in Atmospheric Sciences

, Volume 33, Issue 6, pp 685–694

Comparison of constant and time-variant optimal forcing approaches in El Niño simulations by using the Zebiak–Cane model

Article
  • 49 Downloads

Abstract

Model errors offset by constant and time-variant optimal forcing vector approaches (termed COF and OFV, respectively) are analyzed within the framework of El Ni˜no simulations. Applying the COF and OFV approaches to the well-known Zebiak–Cane model, we re-simulate the 1997 and 2004 El Ni˜no events, both of which were poorly degraded by a certain amount of model error when the initial anomalies were generated by coupling the observed wind forcing to an ocean component. It is found that the Zebiak–Cane model with the COF approach roughly reproduced the 1997 El Ni˜no, but the 2004 El Ni˜no simulated by this approach defied an ENSO classification, i.e., it was hardly distinguishable as CP-El Ni˜no or EP-El Ni˜no. In both El Ni˜no simulations, substituting the COF with the OFV improved the fit between the simulations and observations because the OFV better manages the time-variant errors in the model. Furthermore, the OFV approach effectively corrected the modeled El Ni˜no events even when the observational data (and hence the computational time) were reduced. Such a cost-effective offset of model errors suggests a role for the OFV approach in complicated CGCMs.

Keywords

ENSO simulation model error optimal forcing vector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, S. I., and F. F. Jin, 2001: Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Climate, 14(16), 3421–3432.CrossRefGoogle Scholar
  2. Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi: 10.1029/2006JC003798.CrossRefGoogle Scholar
  3. Barkmeijer, J., T. Iversen, and T. N. Palmer, 2003: Forcing singular vectors and other sensitive model structures. Quart. J. Roy. Meteor. Soc., 129(592), 2401–2423.CrossRefGoogle Scholar
  4. Barreiro, M., and P. Chang, 2004: A linear tendency correction technique for improving seasonal prediction of SST. Geophys. Res. Lett., 31(23), L23209, doi: 10.1029/2004gl021148.CrossRefGoogle Scholar
  5. Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126(4), 1013–1021.Google Scholar
  6. Blumenthal, M. B., 1991: Predictability of a coupled oceanatmosphere model. J. Climate, 4(8), 766–784.CrossRefGoogle Scholar
  7. Bourassa, M. A., Rosario Romero, Shawn R. Smith, and James J. O’Brien, 2005: A new FSU winds climatology. J. Climate, 18, 3686–3698, doi: http://dx.doi.org/10.1175/JCLI3487.1.CrossRefGoogle Scholar
  8. Chen, D. K., S. E. Zebiak, A. J. Busalacchi, and M. A. Cane, 1995: An improved procedure for El Niño forecasting: Implications for predictability. Science, 269, 1699–1702.CrossRefGoogle Scholar
  9. Chen, D. K., C. M. Cane, S. E. Zebiak, R. Cañizares, and A. Kaplan, 2000: Bias correction of an ocean-atmosphere coupled model. Geophys. Res. Lett., 27(16), 2585–2588, doi: 10.1029/1999gl011078.CrossRefGoogle Scholar
  10. Chen, D. K., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. J. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428(6984), 733–736.CrossRefGoogle Scholar
  11. D’andrea, F., and R. Vautard, 2000: Reducing systematic errors by empirically correcting model errors. Tellus A, 52(1), 21–41.CrossRefGoogle Scholar
  12. Duan, W. S., B. Tian, and H. Xu, 2014: Simulations of two types of El Niño events by an optimal forcing vector approach. Climate Dyn., 43, 1677–1692, doi: 10.1007/s00382–013-1993–4.CrossRefGoogle Scholar
  13. Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99(C5), 10143–10162.CrossRefGoogle Scholar
  14. Feng, F., and W. S. Duan, 2013: The role of constant optimal forcing in correcting forecast models. Science China Earth Sciences, 56(3), 434–443.CrossRefGoogle Scholar
  15. Guilyardi, E., H. Bellenger, M. Collins, S. Ferrett, W. J. Cai, and A. T.Wittenberg, 2012: A first look at ENSO in CMIP5. CLIVAR Exchange, 17, 29–32.Google Scholar
  16. Ham, Y. G., and J. S. Kug, 2012: How well do current climate models simulate two types of El Niño? Climate Dyn., 39(1–2), 383–398, doi: 10.1007/s00382–011-1157–3.CrossRefGoogle Scholar
  17. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77(3), 437–471.CrossRefGoogle Scholar
  18. Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22(3), 615–632.CrossRefGoogle Scholar
  19. Kim, S. T., J. Y. Yu, A. Kumar, and H. Wang, 2012: Examination of the two types of ENSO in the NCEP CFS model and its extratropical associations. Mon. Wea. Rev., 140(6), 1908–1923.CrossRefGoogle Scholar
  20. Kug, J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22(6), 1499–1515.CrossRefGoogle Scholar
  21. Kug, J. S., J. Choi, S. I. An, F. F. Jin, and A. T. Wittenberg, 2010: Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J. Climate, 23(5), 1226–1239.CrossRefGoogle Scholar
  22. Leith, C. E., 1978: Objective methods for weather prediction. Annual Review of Fluid Mechanics, 10(1), 107–128, doi: 10.1146/annurev.fl.10.010178.000543.CrossRefGoogle Scholar
  23. Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17(3), 321–333.CrossRefGoogle Scholar
  24. Morss, R. E., K. A. Emanuel, and C. Snyder, 2001: Idealized adaptive observation strategies for improving numerical weather prediction. J. Atmos. Sci., 58(2), 210–232.CrossRefGoogle Scholar
  25. Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes in Geophysics, 10(6), 493–501.CrossRefGoogle Scholar
  26. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), 4407, doi: 10.1029/2002JD 002670.CrossRefGoogle Scholar
  27. Roads, J. O., 1987: Predictability in the extended range. J. Atmos. Sci., 44(23), 3495–3527.CrossRefGoogle Scholar
  28. Talagrand, O., 1997: Assimilation of observations, an introduction. J. Meteor. Soc. Japan, 75, 191–209.Google Scholar
  29. Tang, Y. M., Z.W. Deng, X. B. Zhou, Y. J. Cheng, and D. K. Chen, 2008: Interdecadal variation of ENSO predictability in multiple models. J. Climate, 21(18), 4811–4833.CrossRefGoogle Scholar
  30. Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125(12), 3297–3319.CrossRefGoogle Scholar
  31. Vannitsem, S., and Z. Toth, 2002: Short-term dynamics of model errors. J. Atmos. Sci., 59(17), 2594–2604.CrossRefGoogle Scholar
  32. Xue, Y., M. A. Cane, S. E. Zebiak, and M. B. Blumenthal, 1994: On the prediction of ENSO: A study with a low-orderMarkov model. Tellus A, 46(4), 512–528.CrossRefGoogle Scholar
  33. Yu, J. Y., and S. T. Kim, 2010: Three evolution patterns of central-Pacific El Niño. Geophys. Res. Lett., 37, L08706, doi: 10.1029/2010GL042810.Google Scholar
  34. Zebiak, S. E., and M. A. Cane, 1987: A model El Niño-southern oscillation. Mon. Wea. Rev., 115(10), 2262–2278.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratory for Climate Studies, National Climate CenterChina Meteorological AdministrationBeijingChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations