Advances in Atmospheric Sciences

, Volume 33, Issue 6, pp 659–672 | Cite as

Estimation and correction of model bias in the NASA/GMAO GEOS5 data assimilation system: Sequential implementation

  • Banglin ZhangEmail author
  • Vijay Tallapragada
  • Fuzhong Weng
  • Jason Sippel
  • Zaizhong Ma


This study presents a simplified multivariate bias correction scheme that is sequentially implemented in the GEOS5 data assimilation system and compared against a control experiment without model bias correction. The results show considerable improvement in terms of the mean biases of rawinsonde observation-minus-background (OmB) residuals for observed water vapor, wind and temperature variables. The time series spectral analysis shows whitening of bias-corrected OmB residuals, and mean biases for rawinsonde observation-minus-analysis (OmA) are also improved. Some wind and temperature biases in the control experiment near the equatorial tropopause nearly vanish from the bias-corrected experiment. Despite the analysis improvement, the bias correction scheme has only a moderate impact on forecast skill. Significant interaction is also found among quality-control, satellite observation bias correction, and background bias correction, and the latter positively impacts satellite bias correction.


data assimilation model bias estimation and correction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auligné, T., and A. P. McNally, 2007: Interaction between bias correction and quality control. Quart. J. Roy. Meteor. Soc., 133, 643–653.CrossRefGoogle Scholar
  2. Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 3323–3343.CrossRefGoogle Scholar
  3. Dee, P. D., and A. M. da Silva, 1998: Data assimilation in the presence of forecast bias. Quart. J. Roy. Meteor. Soc., 124, 269–295.CrossRefGoogle Scholar
  4. Dee, P. D., and R. Todling, 2000: Data assimilation in the presence of forecast bias: The GEOS moisture analysis. Mon. Wea. Rev., 128, 3268–3282.CrossRefGoogle Scholar
  5. Kamga, A. F., S. Fongang, and A. Viltard, 2000: Systematic errors of the ECMWF operational model over tropical Africa. Mon. Wea. Rev., 128, 1949–1959.CrossRefGoogle Scholar
  6. Radakovich, J. D., P. R. Houser, A. da Silva, and M. G. Bosilovich, 2001: Results from global land-surface data assimilation methods. Proc. Fifth Symp. on Integrated Observing Systems, Albuquerque, N. M., 132–134.Google Scholar
  7. Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of Versions 5.0.1, 5.1.0, and 5.2.0. NASA/TM–2008–104606, Vol. 27, NASA Global Model. and Assimil. Off., NASA Goddard Space Flight Cent., Greenbelt, Md. [Available online at].Google Scholar
  8. Saha, S., 1992: Response of the NMC MRF model to systematicerror correction within integration. Mon. Wea. Rev., 120, 345–360.CrossRefGoogle Scholar
  9. Schubert, S., and Y. H. Chang, 1996: An objective method for inferring sources of model error. Mon. Wea. Rev., 124, 325–340.CrossRefGoogle Scholar
  10. Takacs, L. L., 1996: A simple bias correction algorithm for use in data assimilation. DAO Office Note 96–25, 32 pp.Google Scholar
  11. von Storch, H., and F.W. Zwiers, 1999. Statistical Analysis in Climate Research. Cambridge University Press, 494 pp.CrossRefGoogle Scholar
  12. Zhang, B. L., D. P. Dee, A. M. da Silva, and R. Todling, 2001: Model bias correction in the DAO physical-space/finitevolume data assimilation system. Proc. Conference Series, 14th Conference on Numerical Weather Prediction, Fort Lauderdale, Florida, 23–27.Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Banglin Zhang
    • 1
    • 2
    Email author
  • Vijay Tallapragada
    • 2
  • Fuzhong Weng
    • 3
  • Jason Sippel
    • 1
    • 2
  • Zaizhong Ma
    • 4
  1. 1.I.M. System Group, Inc.College ParkUSA
  2. 2.NOAA NCEP Environmental Modeling CenterCollege ParkUSA
  3. 3.NOAA Center for Satellite Applications and ResearchCollege ParkUSA
  4. 4.NOAA Joint Center for Satellite Data AssimilationCollege ParkUSA

Personalised recommendations