Advances in Atmospheric Sciences

, Volume 33, Issue 3, pp 365–376 | Cite as

Climatology of lightning activity in South China and its relationships to precipitation and convective available potential energy

  • Dong ZhengEmail author
  • Yijun Zhang
  • Qing Meng
  • Luwen Chen
  • Jianru Dan


This study examined lightning activity and its relationship to precipitation and convective available potential energy (CAPE) in South China during 2001–12, based on data from the Guangdong Lightning Location System, the Tropical Rainfall Measuring Mission satellite, and the ERA-Interim dataset. Two areas of high lightning density are identified: one over the Pearl River Delta, and the other to the north of Leizhou Peninsula. Large peak-current cloud-to-ground (LPCCG) lightning (>75 kA) shows weaker land–offshore contrasts than total CG lightning, in which negative cloud-to-ground (NCG) lightning occurs more prominently than positive cloud-to-ground (PCG) lightning on land. While the frequency of total CG lightning shows a main peak in June and a second peak in August, the LPCCG lightning over land shows only a single peak in June. The ratio of positive LPCCG to total lightning is significantly greater during February–April than during other times of the year. Diurnally, CG lightning over land shows only one peak in the afternoon, whereas CG lightning offshore shows morning and afternoon peaks. The rain yield per flash is on the order of 107–108 kg per flash across the analysis region, and its spatial distribution is opposite to that of lightning density. Our data show that lightning activity over land is more sensitive than that over offshore waters to CAPE. The relationships between lightning activity and both precipitation and CAPE are associated with convection activity in the analysis region.

Key words

climate characteristics lightning precipitation CAPE large peak current land–offshore contrast 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altaratz, O., Z. Levin, Y. Yair, and, and B. Ziv, 2003: Lightning activity over land and sea on the eastern coast of the Mediterranean. Mon. Wea. Rev., 131, 2060–2070.CrossRefGoogle Scholar
  2. Baker, M. B., H. J. Christian, and J. Latham, 1995: A computational study of the relationships linking lightning frequency and other thundercloud parameters. Quart. J. Roy. Meteor. Soc., 121, 1525–1548.CrossRefGoogle Scholar
  3. Betz, H. D., U. Schumann, and P. Laroche, 2009: Lightning: Principles, Instruments and Applications: Review of Modern Lightning Research. Springer, Berlin.Google Scholar
  4. Boccippio, D. J., and H. J. Christian, 1999: Optical detection of lightning from space. Proc. 11th International Conf. on Lightning Detection, Guntersville, Alabama, 746–749.Google Scholar
  5. Chen, L. W., Y. J. Zhang, W. T. Lu, D. Zheng, Y. Zhang, S. D. Chen, and Z. H. Huang, 2012: Performance evaluation for a lightning location system based on observations of artificially triggered lightning and natural lightning flashes. J. Atmos. Oceanic Technol., 29, 1835–1844.CrossRefGoogle Scholar
  6. Chen, S. M., Y. Du, L. M. Fan, H. M. He, and D. Z. Zhong, 2002: Evaluation of the Guang Dong lightning location system with transmission line fault data. IEE Proceedings-Science, Measurement and Technology, 149(1), 9–16.CrossRefGoogle Scholar
  7. Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108(D1), 4005, doi: 10.1029/2002JD002347.CrossRefGoogle Scholar
  8. Coquillat, S., M.-P. Boussaton, M. Buguet, D. Lambert, J.-F. Ribaud, and A. Berthelot, 2013: Lightning ground flash patterns over Paris area between 1992 and 2003}: Influence of pollution? Atmos. Res., 122, 77–Google Scholar
  9. Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. national lightning detection network. J. Geophys. Res., 103, 9035–9044.CrossRefGoogle Scholar
  10. Daniel, J. C., E. B. Buechler, and J. B. Richard, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135-136, 404–414.CrossRefGoogle Scholar
  11. Ding, Y. H., and Z. Y. Wang, 2008: A study of rainy seasons in China. Meteor. Atmos. Phys., 100, 121–138.CrossRefGoogle Scholar
  12. Hidayat, S., and M. Ishii, 1998: Spatial and temporal distribution of lightning activity around Java. J. Geophys. Res., 103(D12), 14 001–14 009.CrossRefGoogle Scholar
  13. Kandalgaonka, S. S., M. I. R. Tinmaker, J. R. Kulkarni, A. Nath, M. K. Kulkarni, and H. K. Trimbake, 2005: Spatio-temporal variability of lightning activity over the Indian region. J. Geophys. Res., 110(D11), D11108, doi: 10.1029/2004JD005631.CrossRefGoogle Scholar
  14. Kar, S. K., Y.-A. Liou, and K.-J. Ha, 2009: Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos. Res., 92, 80–87.CrossRefGoogle Scholar
  15. Kempf, N. M., and E. P. Krider, 2003: Cloud-to-ground lightning and surface rainfall during the Great Flood of 1993. Mon. Wea. Rev., 131(6), 1140–1149.CrossRefGoogle Scholar
  16. Kochtubajda, B., W. R. Burrows, and B. E. Power, 2006: Large current lightning flashes in Canada. Proc. 2nd Conf. on Meteorological Applications of Lightning Data, Atlanta, Georgia, USA, AMS.Google Scholar
  17. Kuleshov, Y., D. Mackerras, and M. Darveniza, 2006: Spatial distribution and frequency of lightning activity and lightning flash density maps for Australia. J. Geophys. Res., 111(D19), doi: 10.1029/2005JD006982.Google Scholar
  18. Kumar, P. R., and A. K. Kamra, 2010: Lightning activity variations over three islands in a tropical monsoon region. Atmos. Res., 98, 309–316.CrossRefGoogle Scholar
  19. López, R. E., R. Ortíz, W. D. Otto, and R. L. Holle, 1991: The lightning activity and precipitation yield of convective cloud systems in central Florida. Preprints, 25th International Conf. on Radar Meteorology, Boston, Massachusetts, USA, Amer. Meteor. Soc., 907–910.Google Scholar
  20. Luo, Y. L., H. Wang, R. H. Zhang, W. M. Qian, and Z. Z. Luo, 2013: Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai River Basin. J. Climate, 26, 110–132.CrossRefGoogle Scholar
  21. Lyons, W. A., M. Uliasz, and T. E. Nelson, 1998: Large peak current cloud-to-ground lightning flashes during the summer months in the Contiguous United States. Mon.Wea. Rev., 126, 2217–2233.CrossRefGoogle Scholar
  22. Ma, M., S. C. Tao, B. Y. Zhu, and W. T. Lü, 2005a: Climatological distribution of lightning density observed by satellites in China and its circumjacent regions. Science in China Series D: Earth Sciences, 48(2), 219–229.CrossRefGoogle Scholar
  23. Ma, M., S. C. Tao, B. Y. Zhu, W. T. Lü, and Y. B. Tan, 2005b: Response of global lightning activity to air temperature variation. Chinese Science Bullutin, 50(22), 2640–2644.CrossRefGoogle Scholar
  24. Orville, R. E., and G. R. Huffines, 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129, 1179–1193.CrossRefGoogle Scholar
  25. Orville, R. E., G. Huffines, J. Nielsen-Gammon, R. Y. Zhang, B. Ely, S. Steiger, S. Phillips, S. Allen, and W. Read, 2001: Enhancement of cloud-to-ground lightning over Houston, Texas. Geophys. Res. Lett., 28, 2597–2600.CrossRefGoogle Scholar
  26. Orville, R. E., G. R. Huffines, W. R. Burrows, R. L. Holle, and K. L. Cummins, 2002: The North American Lightning Detection Network (NALDN)—First results: 1998–2000. Mon. Wea. Rev., 130, 2098–2109.CrossRefGoogle Scholar
  27. Pan, L. X., D. X. Liu, X. S. Qie, D. F. Wang, and R. P. Zhu, 2013: Land-sea contrast in the lightning diurnal variation as observed by the WWLLN and LIS/OTD data. Acta Meteorologica Sinica, 27(4), 591–600.CrossRefGoogle Scholar
  28. Petersen, W. A., and S. A. Rutledge, 1998: On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res., 103(D12), 14 025–14 040.CrossRefGoogle Scholar
  29. Pinto, O., Jr., I. R. C. A. Pinto, M. A. S. S. Gomes, I. Vitorello, A. L. Padilha, J. H. Diniz, A. M. Carvalho, and A. C. Filho, 1999a: Cloud-to-ground lightning in the southeastern Brazil in 1993: 1. Geographical distribution. J. nGeophys. Res., 104, 31369–31380.Google Scholar
  30. Pinto, I. R. C. A., O. Pinto Jr., R. M. L. Rocha, J. H. Diniz, A. M. Carvalho, and A. C. Filho, 1999b: Cloud-to-ground lightning in the southeastern Brazil in 1993: 2. Time variations and flash characteristics. J. Geophys. Res., 104, 31381–31387.Google Scholar
  31. Pinto, O., Jr., I. R. C. A. Pinto, D. R. de Campos, and K. P. Naccarato, 2009: Climatology of large peak current cloud-toground lightning flashes in southeastern Brazil. J. Geophys. Res., 114, D16105, doi: 10.1029/2009JD012029.CrossRefGoogle Scholar
  32. Price, C., 1993: Global surface temperatures and the atmospheric electrical circuit. Geophys. Res. Lett., 20, 1363–1366.CrossRefGoogle Scholar
  33. Qie, X. S., R. Toumi, and Y. J. Zhou, 2003a: Lightning activity on the central Tibetan Plateau and its response to convective available potential energy. Chinese Science Bulletin, 48(3), 296–299.Google Scholar
  34. Qie, X. S, R. Toumi, and T. Yuan, 2003b: Lightning activities on the Tibetan Plateau as observed by the lightning imaging sensor}. J. Geophys. Res.}, 108}(D17}), 4541, doi: 10.1029/2002JD 0CrossRefGoogle Scholar
  35. Reeve, N., and R. Toumi, 1999: Lightning activity as an indicator of climate change. Quart. J. Roy. Meteor. Soc., 125, 893–903.CrossRefGoogle Scholar
  36. Romps, D. M., J. T. Seeley, D. Vollaro, and J. Molinari, 2014: Projected increase in lightning strikes in the United States due to global warming. Science, 346, 851–854.CrossRefGoogle Scholar
  37. Rudlosky, S. D., and H. E. Fuelberg, 2010: Pre-and postupgrade distributions of NLDN reported cloud-to-ground lightning characteristics in the Contiguous United States}. Mon. Wea. Rev.,} 138}, 3623–CrossRefGoogle Scholar
  38. Seity, Y., S. Soula, and H. Sauvageot, 2001: Lightning and precipitation relationship in coastal thunderstorms. J. Geophys. Res., 106(D19), 22 801–22 816.CrossRefGoogle Scholar
  39. Sherwood, S. C., V. T. J. Phillips, and J. S.Wettlaufer, 2006: Small ice crystals and the climatology of lightning. Geophys. Res. Lett., 33, L05804, doi: 10.1029/2005GL025242.CrossRefGoogle Scholar
  40. Shindo, T., and S. Yokoyama, 1998: Lightning occurrence data observed with lightning location systems in Japan: 1992–1995. IEEE Transactions on Power Delivery, 13, 1368–1474.CrossRefGoogle Scholar
  41. Soriano, L. R., F. de Pablo, and E. G. Diez, 2001: Relationship between convective precipitation and cloud-to-ground lightning in the Iberian Peninsula. Mon.Wea. Rev., 129(12), 2998–3003.CrossRefGoogle Scholar
  42. Steiger, S. M., and R. E. Orville, 2003: Cloud-to-ground lightning enhancement over southern Louisiana}. Geophys. Res. Lett.,} 30}(19}), 1975, doi: 10.1029/2003GL0CrossRefGoogle Scholar
  43. Tapia, A., J. A. Smith, and M. Dixon, 1998: Estimation of convective rainfall from lightning observations. J. Appl. Meteor., 37, 1497–1509.CrossRefGoogle Scholar
  44. Wang, Y., Q. Wan, W. Meng, F. Liao, H. Tan, and R. Zhang, 2011: Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China. Atmospheric Chemistry and Physics, 11, 12421–12436.CrossRefGoogle Scholar
  45. Williams, E., and S. Stanfill, 2002: The physical origin of the land-ocean contrast in lightning activity. Comptes Rendus Physique, 3, 1277–1292.CrossRefGoogle Scholar
  46. Williams, E., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107(D20), 8082, doi: 10.1029/2001JD 000380.CrossRefGoogle Scholar
  47. Williams, E. R., S. G. Geotis, N. Renno, S. A. Rutledge, E. Rasmussen, and T. Rickenbach, 1992: A radar and electrical study of tropical “hot towers”. J. Atmos. Sci., 49, 1386–1395.CrossRefGoogle Scholar
  48. Williams, E., T. Chan, and D. Boccippio, 2004: Islands as miniature continents: another look at the land-ocean lightning contrast. J. Geophys. Res., 109, D16206, doi: 10.1029/2003JD 003833.CrossRefGoogle Scholar
  49. Wu, X. K., X. S. Qie, and T. Yuan, 2013: Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region. Science China Earth Sciences, 56(5), 843–854.CrossRefGoogle Scholar
  50. Xu, W. X., 2013: Precipitation and convective characteristics of summer deep convection over East Asia Observed by TRMM}. Mon. Wea. Rev.,} 141}, 1577–CrossRefGoogle Scholar
  51. Xu, W. X., and E. J. Zipser, 2012: Properties of deep convection in tropical continental, monsoon, and oceanic rainfall regimes}. Geophys. Res. Lett.,} 39}, L07802, doi: 10.1029/2012GL 05Google Scholar
  52. Xu, W. X., E. J. Zipser, and C. T. Liu, 2009: Rainfall characteristics and convective properties of Mei-Yu precipitation systems over South China, Taiwan, and the South China Sea. Part I: TRMM observations. Mon. Wea. Rev., 137, 4261–4275.Google Scholar
  53. Yi, Y. M., Z. L. Yang, and Q. L. Wan, 2006: Analysis of lightning density in Guangzhou City. Resources Science, 28(1), 151–156. (in Chinese)Google Scholar
  54. Yuan, T., and X. S. Qie, 2008: Study on lightning activity and precipitation characteristics before and after the onset of the South China Sea summer monsoon. J. Geophys. Res., 113, D14101, doi: 10.1029/2007JD009382.CrossRefGoogle Scholar
  55. Zhang, M. F., X. S. Liu, Y. J. Zhang, M L. Fan, D. Z. Zhong, and L. C. Zhou, 2000: Preliminary study on climatological distributions of lightning flash in Guangdong. Journal of Tropical Meteorology, 16(1), 46–53. (in Chinese)Google Scholar
  56. Zhang, W. J., Q. Meng, M. Ma, and Y. J. Zhang, 2011: Lightning casualties and damages in China from 1997 to 2009. Natural Hazards, 57, 465–476.CrossRefGoogle Scholar
  57. Zheng, D., J. R. Dan, Y. J. Zhang, C. Wu, and C. J. Zeng, 2012: Regional differences of relationship between cloud-to-ground lightning and precipitation in China. Journal of Tropical Meteorology, 28(4), 569–576. (in Chinese)Google Scholar
  58. Zheng, D., Y. J. Zhang, Q. Meng, and W. T. Lü, 2010: Relationship between lightning activities and surface precipitation in thunderstorm weather in Beijing. Journal of Applied Meteorological Science, 21(3), 287–297. (in Chinese)Google Scholar
  59. Zheng, Y. G., and J. Cheng, 2011: A climatology of deep convection over south China and adjacent seas during summer}. Journal of Tropical Meteorology,} 27}(4}), 495–508. (in ChGoogle Scholar
  60. Zipser, E. J., 1994: Deep cumulonimbus cloud systems in the tropics with and without lightning. Mon. Wea. Rev., 122, 1837–1851.CrossRefGoogle Scholar
  61. Zipser, E. J., C. T. Liu, D. J. Cecil, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 1057–1071.CrossRefGoogle Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag Berlin Heidelberg 2016

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (

Authors and Affiliations

  • Dong Zheng
    • 1
    • 2
    Email author
  • Yijun Zhang
    • 1
    • 2
  • Qing Meng
    • 1
    • 2
  • Luwen Chen
    • 3
  • Jianru Dan
    • 4
  1. 1.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  2. 2.Laboratory of Lightning Physics and Protection EngineeringChinese Academy of Meteorological SciencesBeijingChina
  3. 3.Lightning Protection Center of Guangdong ProvinceGuangzhouChina
  4. 4.Conghua Meteorological BureauGuangzhouChina

Personalised recommendations