Advances in Atmospheric Sciences

, Volume 33, Issue 2, pp 164–174 | Cite as

Trends of regional precipitation and their control mechanisms during 1979–2013

  • Run Liu
  • Shaw Chen LiuEmail author
  • Chein-Jung Shiu
  • Jun Li
  • Yuanhang Zhang


Trends in precipitation are critical to water resources. Considerable uncertainty remains concerning the trends of regional precipitation in response to global warming and their controlling mechanisms. Here, we use an interannual difference method to derive trends of regional precipitation from GPCP (Global Precipitation Climatology Project) data and MERRA (Modern- Era Retrospective Analysis for Research and Applications) reanalysis in the near-global domain of 60°S–60°N during a major global warming period of 1979–2013. We find that trends of regional annual precipitation are primarily driven by changes in the top 30% heavy precipitation events, which in turn are controlled by changes in precipitable water in response to global warming, i.e., by thermodynamic processes. Significant drying trends are found in most parts of the U.S. and eastern Canada, the Middle East, and eastern South America, while significant increases in precipitation occur in northern Australia, southern Africa, western India and western China. In addition, as the climate warms there are extensive enhancements and expansions of the three major tropical precipitation centers–the Maritime Continent, Central America, and tropical Africa–leading to the observed widening of Hadley cells and a significant strengthening of the global hydrological cycle.


regional precipitation global warming water resources 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

376_2015_5117_MOESM1_ESM.pdf (2.2 mb)
Supplementary material, approximately 829 KB.


  1. Adler, R. F., G. J. Gu, J. J. Wang, G. J. Huffman, S. Curtis, and D. Bolvin, 2008: Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). J. Geophys. Res., 113, D22104, doi: 10.1029/2008jd010536.CrossRefGoogle Scholar
  2. Adler, R. F., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4, 1147–1167, doi: 10.1175/1525-7541(2003)004<1147:Tvgpcp>2.0.Co;2.CrossRefGoogle Scholar
  3. Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224–232, doi: 10.1038/nature01092.CrossRefGoogle Scholar
  4. Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 3803–3822, doi: 10.1175/jcli-d-12-00543.1.CrossRefGoogle Scholar
  5. Chou, C., J. C. H. Chiang, C. W. Lan, C. H. Chung, Y. C. Liao, and C. J. Lee, 2013: Increase in the range between wet and dry season precipitation. Nature Geoscience, 6, 263–267, doi: 10.1038/ngeo1744.CrossRefGoogle Scholar
  6. Cubasch, U., and Coauthors, 2001: Projections of future climate change. Chapter 9, Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton et al., Eds., Cambridge University Press, 524–582.Google Scholar
  7. Dai, A. G., J. H. Wang, P. W. Thorne, D. E. Parker, L. Haimberger, and X. L. Wang, 2011: A new approach to homogenize daily radiosonde humidity data. J. Climate, 24, 965–991, doi: 10.1175/2010jcli3816.1.CrossRefGoogle Scholar
  8. Davis, S. M., and K. H. Rosenlof, 2012: A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J. Climate, 25, 1061–1078, doi: 10.1175/jcli-d-11-00127.1.CrossRefGoogle Scholar
  9. Dessler, A. E., and S. M. Davis, 2010: Trends in tropospheric humidity from reanalysis systems. J. Geophys. Res., 115, D19127, doi: 10.1029/2010jd014192.Google Scholar
  10. Durre, I., C. N. Williams Jr., X. G. Yin, and R. S. Vose, 2009: Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update. J. Geophys. Res., 114, D05112, doi: 10.1029/2008jd010989.Google Scholar
  11. Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and surface. Chapter 2, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.Google Scholar
  12. Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699, doi: 10.1175/jcli3990.1.CrossRefGoogle Scholar
  13. Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmospheric Chemistry and Physics, 7, 5229–5236, doi: 10.5194/acp-7-5229-2007.CrossRefGoogle Scholar
  14. Jones, P. D., and A. Moberg, 2003: Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J. Climate., 16, 206–223, doi: 10.1175/1520-0442(2003)016<0206:HALSSA>2.0.CO;2.CrossRefGoogle Scholar
  15. Lau, K. M., and H. T. Wu, 2011: Climatology and changes in tropical oceanic rainfall characteristics inferred from Tropical Rainfall Measuring Mission (TRMM) data (1998–2009). J. Geophys. Res., 116, D17111, doi: 10.1029/2011jd015827.CrossRefGoogle Scholar
  16. Liu, C. L., and R. P. Allan, 2013: Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environmental Research Letters, 8, doi: 10.1088/1748-9326/8/3/034002.Google Scholar
  17. Liu, S. C., C. B. Fu, C. J. Shiu, J. P. Chen, and F. T. Wu, 2009: Temperature dependence of global precipitation extremes. Geophys. Res. Lett., 36, L17702, doi: 10.1029/2009gl040218.CrossRefGoogle Scholar
  18. Mitchell, J. F. B., C. A. Wilson, and W. M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113, 293–322, doi: 10.1002/qj.49711347517.CrossRefGoogle Scholar
  19. Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693–712, doi: 10.1002/joc.1181.CrossRefGoogle Scholar
  20. Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Climate, 24, 3624–3648, doi: 10.1175/Jcli-D-11-00015.1.CrossRefGoogle Scholar
  21. Santer, B. D., and Coauthors, 2007: Identification of humaninduced changes in atmospheric moisture content. Proc. Natl. Acad. Sci. USA, 104, 15248–15253, doi: 10.1073/pnas.0702872104.CrossRefGoogle Scholar
  22. Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 15–40, doi: 10.1007/s00704-013-0860-x.CrossRefGoogle Scholar
  23. Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 1181–1184, doi: 10.1126/science.1139601.CrossRefGoogle Scholar
  24. Shiu, C. J., S. C. Liu, C. B. Fu, A. G. Dai, and Y. Sun, 2012: How much do precipitation extremes change in a warming climate? Geophys. Res. Lett., 39, L17707, doi: 10.1029/2012gl052762.CrossRefGoogle Scholar
  25. Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296, doi: 10.1175/2007jcli2100.1.CrossRefGoogle Scholar
  26. Stachnik, J. P., and C. Schumacher, 2011: A comparison of the Hadley circulation in modern reanalyses. J. Geophys. Res., 116, D22102, doi: 10.1029/2011jd016677.Google Scholar
  27. Sun, Y., S. Solomon, A. G. Dai, and R. W. Portmann, 2007: How often will it rain? J. Climate, 20, 4801–4818, doi: 10.1175/jcli4263.1.CrossRefGoogle Scholar
  28. Tokinaga, H., S. P. Xie, C. Deser, Y. Kosaka, and Y. M. Okumura, 2012: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439–444, doi: 10.1038/nature11576.CrossRefGoogle Scholar
  29. Trenberth, K. E., A. G. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteorol. Soc., 84, 1205–1217, doi: 10.1175/bams-84-9-1205.CrossRefGoogle Scholar
  30. Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24, 741–758, doi: 10.1007/s00382-005-0017-4.CrossRefGoogle Scholar
  31. Trenberth, K. E., and Coauthors, 2007: Observations: surface and atmospheric climate change. Chapter 9, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon} et al., Eds., Cambridge University Press, 747–8Google Scholar
  32. Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316–4340, doi: 10.1175/jcli4258.1.CrossRefGoogle Scholar
  33. Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73–76, doi: 10.1038/nature04744.CrossRefGoogle Scholar
  34. Vose, R. S., R. L. Schmoyer, P. M. Steurer, T. Peterson, R. Heim, T. Karl, and J. Eischeid, 1992: The Global Historical Climatology Network: Long–Term Monthly Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN., 325 pp, doi: 10.3334/CDIAC/cli.ndp041.Google Scholar
  35. Yu, B., and F. W. Zwiers, 2010: Changes in equatorial atmospheric zonal circulations in recent decades. Geophys. Res. Lett., 37, L05701, doi: 10.1029/2009gl042071.Google Scholar
  36. Zhao, H. X., and G. W. K. Moore, 2008: Trends in the boreal summer regional Hadley and Walker circulations as expressed in precipitation records from Asia and Africa during the latter half of the 20th century. International Journal of Climatology, 28, 563–578, doi: 10.1002/Joc.1580.CrossRefGoogle Scholar
  37. Zhou, Y. P., K. M. Xu, Y. C. Sud, and A. K. Betts, 2011: Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data. J. Geophys. Res., 116, D09101, doi: 10.1029/2010jd015197.Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Run Liu
    • 1
  • Shaw Chen Liu
    • 2
    • 3
    Email author
  • Chein-Jung Shiu
    • 2
  • Jun Li
    • 1
  • Yuanhang Zhang
    • 1
  1. 1.State Key Joint Laboratory of Environmental Simulation and Pollution ControlCollege of Environmental Sciences and Engineering, Peking UniversityBeijingChina
  2. 2.Research Center for Environmental Changes, Academia SinicaTaipeiChina
  3. 3.Department of Atmospheric ScienceNCUJhongliChina

Personalised recommendations