Advances in Atmospheric Sciences

, Volume 32, Issue 10, pp 1341–1353 | Cite as

Quantitative analysis of the feedback induced by the freshwater flux in the tropical Pacific using CMIP5

  • Hai Zhi
  • Rong-Hua Zhang
  • Pengfei Lin
  • Lanning Wang


Freshwater flux (FWF) directly affects sea surface salinity (SSS) and hence modulates sea surface temperature (SST) in the tropical Pacific. This paper quantifies a positive correlation between FWF and SST using observations and simulations of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to analyze the interannual variability in the tropical Pacific. Comparisons among the displacements of FWF, SSS and SST interannual variabilities illustrate that a large FWF variability is located in the west-central equatorial Pacific, covarying with a large SSS variability, whereas a large SST variability is located in the eastern equatorial Pacific. Most CMIP5 models can reproduce the fact that FWF leads to positive feedback to SST through an SSS anomaly as observed. However, the difference in each model’s performance results from different simulation capabilities of the CMIP5 models in the magnitudes and positions of the interannual variabilities, including the mixed layer depth and the buoyancy flux in the equatorial Pacific. SSS anomalies simulated from the CMIP5 multi-model are sensitive to FWF interannual anomalies, which can lead to differences in feedback to interannual SST variabilities. The relationships among the FWF, SSS and SST interannual variabilities can be derived using linear quantitative measures from observations and the CMIP5 multi-model simulations. A 1 mm d-1 FWF anomaly corresponds to an SSS anomaly of nearly 0.12 psu in the western tropical Pacific and a 0.11°C SST anomaly in the eastern tropical Pacific.

Key words

feedback freshwater flux CMIP5 correlation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, R. F., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4(6), 1147–1167.CrossRefGoogle Scholar
  2. Ballabrera-Poy, J., R. Murtugudde, R.-H. Zhang, and A. J. Busalacchi, 2007: Coupled ocean-atmosphere response to seasonal modulation of ocean color: Impact on interannual climate simulations in the tropical Pacific. J. Climate, 20, 353–374.CrossRefGoogle Scholar
  3. Bao, Q., and Coauthors, 2013: The flexible global ocean–atmosphere–land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561–576, doi:  10.1007/s00376-012-2113-9.CrossRefGoogle Scholar
  4. Bentsen, M., and Coauthors, 2012: The Norwegian Earth System Model, NorESM1-M-Part 1: Description and basic evaluation of the physical climate. Geoscientific Model Development, 6, 687–720.CrossRefGoogle Scholar
  5. Béthoux, J.-P., B. Gentili, and D. Tailliez, 1998: Warming and freshwater budget change in the Mediterranean since the 1940s, their possible relation to the greenhouse effect. Geophys. Res. Lett., 25, 1023–1026.CrossRefGoogle Scholar
  6. Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172.CrossRefGoogle Scholar
  7. Boyer, T. P., S. Levitus, J. I. Antonov, R. A. Locarnini, and H. E. Garcia, 2005: Linear trends in salinity for the World Ocean, 1955–1998. Geophys. Res. Lett., 32, L01604, doi:  10.1029/2004GL021791.CrossRefGoogle Scholar
  8. Collins, M, S. F. B. Tett, and C. Cooper, 2001: The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 17(1), 61–81.CrossRefGoogle Scholar
  9. Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Ni˜no. Nature Geoscience, 3(6), 391–397.CrossRefGoogle Scholar
  10. Cravatte, S., T. Delcroix, D. X. Zhang, M. McPhaden, and J. Leloup, 2009: Observed freshening of the warming western tropical Pacific and extension of the Warm/Fresh pool in recent decades. Climate Dyn., 33, 565–589, doi:  10.1007/s00382-009-0526-7.CrossRefGoogle Scholar
  11. Curry, R., B. Dickson, and I. Yashayaev, 2003: A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature, 426, 826–829.CrossRefGoogle Scholar
  12. Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25(5), 1361–1389.CrossRefGoogle Scholar
  13. Delcroix, T., and C. Hénin, 1991: Seasonal and interannual variations of sea surface salinity in the tropical Pacific Ocean. J. Geophys. Res., 96(C12), 22 135–22 150.CrossRefGoogle Scholar
  14. Dickson, B., I. Yashayaev, J. Meincke, B. Turrell, S. Dye, and J. Holfort, 2002: Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature, 416, 832–837.CrossRefGoogle Scholar
  15. Dix, M., and Coauthors, 2013: The ACCESS coupled model: Documentation of core CMIP5 simulations and initial results. Australian Meteorological and Oceanographic Journal, 63(1), 83–99.Google Scholar
  16. Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 2123–2165.CrossRefGoogle Scholar
  17. Dunne, J. P., and Coauthors, 2013: GFDL’s ESM2 global coupled climate-carbon earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J. Climate, 26, 2247–2267.CrossRefGoogle Scholar
  18. Fedorov, A. V., R. C. Picanowski, S. G. Philander, and G. Boccaletti, 2004: The effect of salinity on the wind-driven circulation and the thermal structure of the upper ocean. J. Phys. Oceanogr., 34, 1949–1966.CrossRefGoogle Scholar
  19. Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, 5(3), 572–597.CrossRefGoogle Scholar
  20. Griffies, S. M., and Coauthors, 2011: The GFDL CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 3520–3544.CrossRefGoogle Scholar
  21. Hackert, E., J. Ballabrera-Poy, A. J. Busalacchi, R.-H. Zhang, and R. Murtugudde, 2011: Impact of sea surface salinity assimilation on coupled forecasts in the tropical Pacific. J. Geophys. Res., 116, C05009, doi:  10.1029/2010JC006708.
  22. Ham, S., S.-Y. Hong, Y. Noh, S. I. An, Y.-H. Byun, H.-S. Kang, J. Lee, and W.-T. Kwon, 2012: Effects of freshwater runoff on a tropical pacific climate in the HadGEM2. Asia-Pacific Journal of Atmospheric Sciences, 48(4), 457–463.CrossRefGoogle Scholar
  23. Huang, B. Y., and V. M. Mehta, 2005: Response of the Pacific and Atlantic oceans to interannual variations in net atmospheric freshwater. J. Geophys. Res., 110, C08008, doi:  10.1029/2004JC002830.
  24. Huang, B. Y., V. M. Mehta, and N. Schneider, 2005: Oceanic response to idealized net atmospheric freshwater in the Pacific at the decadal time scale. J. Phys. Oceanogr., 35, 2467–2486.CrossRefGoogle Scholar
  25. Ingleby, B., and M. Huddleston, 2007: Quality control of ocean temperature and salinity profiles–historical and real-time data. J. Mar. Syst., 65, 158–175.CrossRefGoogle Scholar
  26. Iversen, T., and Coauthors, 2012: The Norwegian Earth System Model, NorESM1-M—Part 2: Climate response and scenario projections. Geoscientific Model Development, 6, 389–415.CrossRefGoogle Scholar
  27. Jacobs, S. S., C. F. Giulivi, and P. A. Mele, 2002: Freshening of the Ross Sea during the late 20th century. Science, 297,386–389.CrossRefGoogle Scholar
  28. Jeffrey, S, L. Rotstayn, M. Collier, S. Dravitzki, C. Hamalainen, C. Moeseneder, K. Wong, and J. Syktus, 2013: Australia’s CMIP5 submission using the CSIRO–Mk3. 6 model. Australian Meteorological and Oceanographic Journal, 63, 1–13.Google Scholar
  29. Ji, D., and Coauthors, 2014: Description and basic evaluation of BNU-ESM version1. Geoscientific Model Development, 7, 1601–1647.CrossRefGoogle Scholar
  30. Jones, C. D., and Coauthors, 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geoscientific Model Development, 4, 543–570.CrossRefGoogle Scholar
  31. Kang, X. B., R. H. Huang, Z. G. Wang, and R.-H. Zhang, 2014: Sensitivity of ENSO variability to Pacific freshwater flux adjustment in the Community Earth System Model. Adv. Atmos. Sci., 31(5), 1009–1021, doi:  10.1007/s00376-014-3232-2.CrossRefGoogle Scholar
  32. Kim, S.-B., T. Lee, and I. Fukumori, 2007: Mechanisms controlling the interannual variation of mixed layer temperature averaged over the Ni˜no-3 region. J. Climate, 20, 3822–3843.CrossRefGoogle Scholar
  33. Lagerloef, G. S. E., 2002: Introduction to the special section: The role of surface salinity on upper ocean dynamics, air-sea interaction and climate. J. Geophys. Res., 107(C12), SRF 1-1–SRF 1-2, doi:  10.1029/2002JC001669.
  34. Levitus, S., 1989: Interpentadal variability of temperature and salinity at intermediate depths of the North Atlantic Ocean, 1970–1974 versus 1955–1959. J. Geophys. Res., 94(C5), 6091–6131.CrossRefGoogle Scholar
  35. Levitus, S., J. I. Antonov, T. P. Boyer, H. E. Garcia, and R. A. Locarnini, 2005: Linear trends of zonally averaged thermosteric, halosteric, and total steric sea level for individual ocean basins and the world ocean, (1955–1959) versus (1994–1998). Geophys. Res. Lett., 32, L16601, doi:  10.1029/2005GL023761.
  36. Li, L. J., and Coauthors, 2013: The flexible global oceanatmosphere-land system model, Grid-point Version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543–560, doi:  10.1007/s00376-012-2140-6.CrossRefGoogle Scholar
  37. Ma, H., L. X. Wu, and Z. Q. Li, 2013: Impact of freshening over the Southern Ocean on ENSO. Atmospheric Science Letters, 14(1), 28–33.CrossRefGoogle Scholar
  38. Maes, C., 1998: Estimating the influence of salinity on sea level anomaly in the ocean. Geophys. Res. Lett., 25, 3551–3554.CrossRefGoogle Scholar
  39. Maes, C., 2000: Salinity variability in the equatorial Pacific Ocean during the 1993–98 period. Geophys. Res. Lett., 27, 1659–1662.CrossRefGoogle Scholar
  40. Manabe, S., and R. J. Stouffer, 1995: Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature, 378, 165–167.CrossRefGoogle Scholar
  41. Meehl, G. A., P. R. Gent, J. M. Arblaster, B. L. Otto-Bliesner, E. C. Brady, and A. Craig, 2001: Factors that affect the amplitude of El Ni˜no in global coupled climate models. Climate Dyn., 17, 515–526.CrossRefGoogle Scholar
  42. Meehl, G. A., and Coauthors, 2013: Climate change projections in CESM1 (CAM5) compared to CCSM4. J. Climate, 26, 6287–6308.CrossRefGoogle Scholar
  43. Schiffer, R. A., and W. B. Rossow, 1985: ISCCP global radiance data set: A new resource for climate research. Bull. Amer. Meteor. Soc., 66(12), 1498–1505.CrossRefGoogle Scholar
  44. Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean temp analysis (1880–2006). J. Climate, 21, 2283–2296.CrossRefGoogle Scholar
  45. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93(4), 485–498.CrossRefGoogle Scholar
  46. Voldoire, A., and Coauthors, 2013: The CNRM-CM5. 1 global climate model: Description and basic evaluation. Climate Dyn., 40(9–10), 2091–2121.CrossRefGoogle Scholar
  47. Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23(23), 6312–6335.CrossRefGoogle Scholar
  48. Wong, A., N. Bindoff, and J. Church, 1999: Large-scale freshening of intermediate waters in the Pacific and Indian Oceans. Nature, 400, 440–443.CrossRefGoogle Scholar
  49. Wong, A. P. S., N. L. Bindoff, and J. A. Church, 2001: Freshwater and heat changes in the north and south Pacific Oceans between the 1960s and 1985–94. J. Climate, 14, 1613–1633.CrossRefGoogle Scholar
  50. Wu, L. X., Y. Sun, J. X. Zhang, L. P. Zhang, and S. Minobe, 2010: Coupled ocean-atmosphere response to idealized freshwater forcing over the Western Tropical Pacific. J. Climate, 23(7), 1945–1954.CrossRefGoogle Scholar
  51. Wu, T., and Coauthors, 2014: An overview of BCC climate system model development and application for climate change studies. J. Meteor. Res., 28(1), 34–56.Google Scholar
  52. Yu, B., and G. Boer, 2002: The roles of radiation and dynamical processes in the El Ni˜no-like response to global warming. Climate Dyn., 19, 539–553.CrossRefGoogle Scholar
  53. Yu, L. S., and R. A. Weller, 2007: Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527–539.CrossRefGoogle Scholar
  54. Yukimoto, S., and Coauthors, 2012: A new global climate model of the meteorological research institute: MRI-CGCM3-model description and basic performance. J. Meteor. Soc. Japan., 90A, 23–64.CrossRefGoogle Scholar
  55. Zhang, L. P., C. Z. Wang, and S.-K. Lee, 2014: Potential role of Atlantic Warm Pool-induced freshwater forcing in the Atlantic Meridional Overturning Circulation: Ocean-sea ice model simulations. Climate Dyn., 43, 553–574.CrossRefGoogle Scholar
  56. Zhang, R.-H., and A. J. Busalacchi, 2009: Freshwater flux (FWF)-induced oceanic feedback in a hybrid coupled model of the tropical Pacific. J. Climate, 22, 853–879.CrossRefGoogle Scholar
  57. Zhang, R.-H., G. H. Wang, D. K. Chen, A. J. Busalacchi, and E. C. Hackert, 2010: Interannual biases induced by freshwater flux and coupled feedback in the tropical pacific. Mon. Wea. Rev., 138, 1715–1737.CrossRefGoogle Scholar
  58. Zhang, R.-H., F. Zheng, J. S. Zhu, Y. H. Pei, Q. A. Zheng, and Z. G. Wang, 2012: Modulation of El Ni˜no-Southern Oscillation by freshwater flux and salinity variability in the tropical Pacific. Adv. Atmos. Sci., 29(4), 647–660, doi:  10.1007/s00376-012-1235-4.CrossRefGoogle Scholar
  59. Zhang, R.-H., F. Zheng, J. Zhu, and Z. G. Wang, 2013: A successful real-time forecast of the 2010–11 La Ni˜na event. Scientific Reports, 3, 1108, doi:  10.1038/srep01108.Google Scholar
  60. Zheng, F., and R.-H. Zhang, 2012: Effects of interannual salinity variability and freshwater flux forcing on the development of the 2007/08 La Ni˜na event diagnosed from Argo and satellite data. Dyn. Atmos. Oceans, 57, 45–57.CrossRefGoogle Scholar
  61. Zheng, F., R.-H. Zhang, and J. Zhu, 2014: Effects of interannual salinity variability on the barrier layer in the western-central equatorial Pacific: A diagnostic analysis from Argo. Adv. Atmos. Sci., 31(3), 532–542, doi:  10.1007/s00376-013-3061-8.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hai Zhi
    • 1
  • Rong-Hua Zhang
    • 2
  • Pengfei Lin
    • 3
  • Lanning Wang
    • 4
  1. 1.The Earth System Modeling Center and College of Atmospheric SciencesNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Key Laboratory of Ocean Circulation and Waves, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  3. 3.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  4. 4.College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina

Personalised recommendations