Advances in Atmospheric Sciences

, Volume 33, Issue 2, pp 135–150 | Cite as

The impact of cut-off lows on ozone in the upper troposphere and lower stratosphere over Changchun from ozonesonde observations

  • Yushan Song
  • Daren LüEmail author
  • Qian Li
  • Jianchun Bian
  • Xue Wu
  • Dan Li


In situ measurements of the vertical structure of ozone were made in Changchun (43.53°N, 125.13°E), China, by the Institute of Atmosphere Physics, in the summers of 2010–13. Analysis of the 89 validated ozone profiles shows the variation of ozone concentration in the upper troposphere and lower stratosphere (UTLS) caused by cut-off lows (COLs) over Changchun. During the COL events, an increase of the ozone concentration and a lower height of the tropopause are observed. Backward simulations with a trajectory model show that the ozone-rich airmass brought by the COL is from Siberia. A case study proves that stratosphere–troposphere exchange (STE) occurs in the COL. The ozone-rich air mass transported from the stratosphere to the troposphere first becomes unstable, then loses its high ozone concentration. This process usually happens during the decay stage of COLs. In order to understand the influence of COLs on the ozone in the UTLS, statistical analysis of the ozone profiles within COLs, and other profiles, are employed. The results indicate that the ozone concentrations of the in-COL profiles are significantly higher than those of the other profiles between ±4 km around the tropopause. The COLs induce an increase in UTLS column ozone by 32% on average. Meanwhile, the COLs depress the lapse-rate tropopause (LRT)/dynamical tropopause height by 1.4/1.7 km and cause the atmosphere above the tropopause to be less stable. The influence of COLs is durable because the increased ozone concentration lasts at least one day after the COL has passed over Changchun. Furthermore, the relative coefficient between LRT height and lower stratosphere (LS) column ozone is -0.62, which implies a positive correlation between COL strength and LS ozone concentration.


ozonesonde cut-off low upper troposphere lower stratosphere tropopause 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barré, J., V. H. Peuch, J. L. Attié, L. El Amraoui, W. A. Lahoz, B. Josse, M. Claeyman, and P. Nédélec, 2012: Stratospheretroposphere ozone exchange from high resolution MLS ozone analyses. Atmospheric Chemistry and Physics, 12(14), 6129–6144.CrossRefGoogle Scholar
  2. Bethan, S., G. Vaughan, and S. J. Reid, 1996: A comparison of ozone and thermal tropopause heights and the impact of tropopause definition on quantifying the ozone content of the troposphere. Quart. J. Roy. Meteor. Soc., 122(532), 929–944.CrossRefGoogle Scholar
  3. Bian, J. C., 2009: Recent Advances in the study of atmospheric vertical structures in upper troposphere and lower stratosphere. Advances in Earth Science, 24(3), 229–241. (in Chinese)Google Scholar
  4. Bian, J. C., A. Gettelman, H. B. Chen, and L. L. Pan, 2007: Validation of satellite ozone profile retrievals using Beijing ozonesonde data. J. Geophys. Res., 112(D6), D06305, doi: 10.1029/2006JD007502.Google Scholar
  5. Birner, T., A. Dörnbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes? Geophys. Res. Lett., 29(14), 45-1–45-4.CrossRefGoogle Scholar
  6. Bourqui, M. S., 2006: Stratosphere-troposphere exchange from the Lagrangian perspective: A case study and method sensitivities. Atmospheric Chemistry and Physics, 6(9), 2651–2670.CrossRefGoogle Scholar
  7. Brewer, A.W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75(326), 351–363.CrossRefGoogle Scholar
  8. Chen, D., D. R. Lü, and Z. Y. Chen, 2014: Simulation of the stratosphere-troposphere exchange process in a typical cold vortex over Northeast China. Science China Earth Sciences, 57(7), 1452–1463.CrossRefGoogle Scholar
  9. Cui, H., C. S. Zhao, Y. Qin, X. D. Zheng, Y. G. Zheng, C. Y. Chan, and L. Y. Chan, 2004: An estimation of ozone flux in a stratosphere-troposphere exchange event. Chinese Science Bulletin, 49(2), 167–174.CrossRefGoogle Scholar
  10. Danielsen, E. F., R. S. Hipskind, S. E. Gaines, G. W. Sachse, G. L. Gregory, and G. F. Hill, 1987: Three-dimensional analysis of potential vorticity associated with tropopause folds and observed variations of ozone and carbon monoxide. J. Geophys. Res., 92(D2), 2103–2111.CrossRefGoogle Scholar
  11. Draxler, R. R., and G. D., Rolph, 2003: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY website. NOAA Air Resources Laboratory, Silver Spring, MD. [Available online at]Google Scholar
  12. Fishman, J., A. E. Wozniak, and J. K. Creilson, 2003: Global distribution of tropospheric ozone from satellite measurements using the empirically corrected tropospheric ozone residual technique: Identification of the regional aspects of air pollution. Atmospheric Chemistry and Physics, 3(4), 893–907.CrossRefGoogle Scholar
  13. Ganguly, N. D., and C. Tzanis, 2011: Study of Stratospheretroposphere exchange events of ozone in India and Greece using ozonesonde ascents. Meteorological Applications, 18(4), 467–474.CrossRefGoogle Scholar
  14. Gettelman, A., P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner, 2011: The extratropical upper troposphere and lower stratosphere. Reviews of Geophysics, 49(3), doi: 10.1029/2011RG000355.Google Scholar
  15. Gimeno, L., R. M. Trigo, P. Ribera, and J. A. Garcia, 2007: Editorial: Special issue on cut-off low systems (COL). Meteor. Atmos. Phys., 96(1–2), 1–2.CrossRefGoogle Scholar
  16. Gouget, H., G. Vaughan, A. Marenco, and H. G. J. Smit, 2000: Decay of a cut-off low and contribution to stratospheretroposphere exchange. Quart. J. Roy. Meteor. Soc., 126(564), 1117–1141.CrossRefGoogle Scholar
  17. Holton, J. R., 1990: On the global exchange of mass between the stratosphere and troposphere. J. Atmos. Sci., 47(3), 392–395.CrossRefGoogle Scholar
  18. Homeyer, C. R., K. P. Bowman, and L. L. Pan, 2010: Extratropical tropopause transition layer characteristics from highresolution sounding data. J. Geophys. Res., 115(D13), doi: 10.1029/2009JD013664.Google Scholar
  19. Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111(470), 877–946.CrossRefGoogle Scholar
  20. Hu, K. X., R. Y. Lu, and D. H. Wang, 2010: Seasonal climatology of cut-off lows and associated precipitation patterns over Northeast China. Meteor. Atmos. Phys., 106(1–2), 37–48.CrossRefGoogle Scholar
  21. IPCC, 1996: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, section 2. Climate Change 1995-The Science of Climate Change, J. T. Houghton et al., Eds., Cambridge University Press, 572 pp.Google Scholar
  22. Kentarchos, A. S., and T. D. Davies, 1998: A climatology of cutoff lows at 200 hPa in the Northern Hemisphere, 1990–1994. International Journal of Climatology, 18(4), 379–390.CrossRefGoogle Scholar
  23. Kim, J. H., and H. Lee, 2010: What causes the springtime tropospheric ozone maximum over Northeast Asia? Adv. Atmos. Sci., 27(3), 543–551, doi: 10.1007/s00376-009-9098-z.CrossRefGoogle Scholar
  24. Komhyr, W. D., R. A. Barnes, G. B. Brothers, J. A. Lathrop, and D. P. Opperman, 1995: Electrochemical concentration cell ozonesonde performance evaluation during STOIC 1989. J. Geophys. Res., 100(D5), 9231–9244.CrossRefGoogle Scholar
  25. Kuang, S., M. J. Newchurch, J. Burris, L. H. Wang, K. Knupp, and G. Y. Huang, 2012: Stratosphere-to-troposphere transport revealed by ground-based lidar and ozonesonde at a midlatitude site. J. Geophys. Res.: Atmospheres, 117(D18), D18305, doi: 10.1029/2012JD017695.Google Scholar
  26. Lefohn, A. S., H. Wernli, D. Shadwick, S. Limbach, S. J. Oltmans, and M. Shapiro, 2011: The importance of stratospheric–tropospheric transport in affecting surface ozone concentrations in the western and northern tier of the United States. Atmos. Environ., 45(28), 4845–4857.CrossRefGoogle Scholar
  27. Li, D., J. C. Bian, and Q. J. Fan, 2015: A deep stratospheric intrusion associated with an intense cut-off low event over East Asia. Science China Earth Sciences, 58(1), 116–128.CrossRefGoogle Scholar
  28. Lin, M. Y., and Coauthors, 2012: Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions. J. Geophys. Res., 117(D21), D00V22, doi: 10.1029/2012JD018151.Google Scholar
  29. Liu, C. X., Y. Liu, X. Liu, and K. Chance, 2013: Dynamical and chemical features of a cutoff low over northeast China in July 2007: Results from satellite measurements and reanalysis. Adv. Atmos. Sci., 30(2), 525–540, doi: 10.1007/s00376-012-2086-8.CrossRefGoogle Scholar
  30. Logan, J. A., 1999a: An analysis of ozonesonde data for the lower stratosphere: Recommendations for testing models. J. Geophys. Res., 104(D13), 16151–16170.CrossRefGoogle Scholar
  31. Logan, J. A., 1999b: An analysis of ozonesonde data for the troposphere: Recommendations for testing 3-D models and development of a gridded climatology for tropospheric ozone. J. Geophy. Res., 104(D13), 16115–16149.CrossRefGoogle Scholar
  32. Mauzerall, D. L., D. Narita, H. Akimoto, L. Horowitz, S. Walters, D. A. Hauglustaine, and G. Brasseur, 2000: Seasonal characteristics of tropospheric ozone production and mixing ratios over East Asia: A global three-dimensional chemical transport model analysis. J. Geophys. Res., 105(D14), 17895–17910.CrossRefGoogle Scholar
  33. Nieto, R., and Coauthors, 2005: Climatological features of cutoff low systems in the northern hemisphere. J. Climate, 18(6), 3085–3103.CrossRefGoogle Scholar
  34. Nikulin, M. S., 2001: Hellinger distance. Encyclopeadia of Mathematics. Ulf Rehmann et al., Eds., Springer. [Available online at]Google Scholar
  35. Ojha, N., and Coauthors, 2014: On the processes influencing the vertical distribution of ozone over the central Himalayas: Analysis of yearlong ozonesonde observations. Atmos. Environ., 88, 201–211.CrossRefGoogle Scholar
  36. Oltmans, S. J., and Coauthors, 1996: Summer and spring ozone profiles over the North Atlantic from ozonesonde measurements. J. Geophys. Res., 101(D22), 29179–29200.CrossRefGoogle Scholar
  37. Pan, L. L., W. J. Randel, B. L. Gary, M. J. Mahoney, and E. J. Hintsa, 2004: Definitions and sharpness of the extratropical tropopause: A trace gas perspective. J. Geophys. Res., 109(D23), D23103, doi: 10.1029/2004JD004982.Google Scholar
  38. Pan, L. L., and Coauthors, 2007: Chemical behavior of the tropopause observed during the Stratosphere-Troposphere Analyses of Regional Transport experiment. J. Geophys. Res., 112(D18), 893–907, doi: 10.1029/2007JD008645.Google Scholar
  39. Pan, L. L., and Coauthors, 2009: Tropospheric intrusions associated with the secondary tropopause. J. Geophys. Res., 114(D10), doi: 10.1029/2008JD011374.Google Scholar
  40. Pittman, J. V., and Coauthors, 2009: Evaluation of AIRS, IASI, and OMI ozone profile retrievals in the extratropical tropopause region using in situ aircraft measurements. J. Geophys. Res., 114(D24), D24109, doi: 10.1029/2009JD012493.CrossRefGoogle Scholar
  41. Price, J. D., and G. Vaughan, 1993: The potential for stratospheretroposphere exchange in cut-off-low systems. Quart. J. Roy. Meteor. Soc., 119(510), 343–365.CrossRefGoogle Scholar
  42. Randel, W. J., D. J. Seidel, and L. L. Pan, 2007: Observational characteristics of double tropopauses. J. Geophys. Res., 112(D7), doi: 10.1029/2006JD007904.Google Scholar
  43. Srivastava, S., S. Lal, M. Naja, S. Venkataramani, and S. Gupta, 2012: Influence of regional pollution and long range transport over western India: Analysis of ozonesonde data. Atmos. Environ., 47, 174–182.CrossRefGoogle Scholar
  44. Sun, L., X. Y. Zheng, and Q. Wang, 1994: The climatological characteristics of northeast cold vortex in China. Quarterly Journal of Applied Meteorology, 5(3), 297–303. (in Chinese)Google Scholar
  45. Tilmes, S., and Coauthors, 2012: Technical Note: Ozonesonde climatology between 1995 and 2011: Description, evaluation and applications. Atmospheric Chemistry and Physics, 12(16), 7475–7497.CrossRefGoogle Scholar
  46. Wang, G. C., Q. X. Kong, H. B. Chen, Y. J. Xuan, and X. W. Wan, 2004b: Characteristics of ozone vertical distribution in the atmosphere over Beijing. Advance in Earth Science, 19(5), 743–748. (in Chinese)Google Scholar
  47. Wang, G. C., Q. X. Kong, Y. J. Xuan, X. W. Wan, H. B. Chen, S. Q. Ma, and Q. Zhao, 2004a: Preliminary analysis on parallel comparison of GPSO3 and Vaisala ozonesondes. J. Appl. Meteor. Sci., 15(6), 672–680. (in Chinese)Google Scholar
  48. Wang, Y., and Coauthors, 2012: Tropospheric ozone trend over Beijing from 2002–2010: Ozonesonde measurements and modeling analysis. Atmospheric Chemistry and Physics, 12(18), 8389–8399.CrossRefGoogle Scholar
  49. Wirth, V., 1995: Diabatic heating in an axisymmetric cut-off cyclone and related stratosphere-troposphere exchange. Quart. J. Roy. Meteor. Soc., 121(521), 127–147.CrossRefGoogle Scholar
  50. WMO, 1957: Meteorology: A three-dimensional science: Second session of the Commission for Aerology. WMO Bull., 6, 134–138.Google Scholar
  51. Xie, F. Q., and X. H. Cai, 2000: Spatial and temporal variation of total ozone over East-Asia. Acta Scientiae Circumstantiae, 20(5), 513–517. (in Chinese)Google Scholar
  52. Xuan, Y. J., S. Q. Ma, H. B. Chen, G. C. Wang, Q. X. Kong, Q. Zhao, and X. W. Wan, 2004: Intercomparisons of GPSO3 and Vaisala ECC ozone sondes. Plateau Meteorology, 23(3), 394–399. (in Chinese)Google Scholar
  53. Yang, J., and D. R. Lü, 2003: A simulation study of Stratospheretroposphere exchange due to Cut-off-low over Eastern Asia. Chinese J. Atmos. Sci., 27(6), 1031–1044. (in Chinese)Google Scholar
  54. Yates, E. L., and Coauthors, 2013: Airborne observations and modeling of springtime stratosphere-to-troposphere transport over California. Atmospheric Chemistry and Physics, 13(24), 12481–12494.CrossRefGoogle Scholar
  55. Zhang, J. Q., Y. J. Xuan, X. L. Yan, M. Y. Liu, H. M. Tian, X. A. Xia, L. Pang, and X. D. Zheng, 2014a: Development and preliminary evaluation of a double-cell ozonesonde. Adv. Atmos. Sci., 31(4), 938–947, doi: 10.1007/s00376-013-3104-1.CrossRefGoogle Scholar
  56. Zhang, J. Q., Y. J. Xuan, X. A. Xia, M. Y. Liu, X. L. Yan, L. Pang, Z. X. Bai, and X. W. Wan, 2014b: Performance evaluation of a Self-developed ozonesonde and its application in an intensive observational campaign. Atmos. Oceanic Sci. Lett., 7(3), 175–179.CrossRefGoogle Scholar
  57. Zhang, M., W. S. Tian, L. Chen, and D. R. Lü, 2010: Crosstropopause mass exchange associated with a tropopause fold event over the northeastern Tibetan Plateau. Adv. Atmos. Sci., 27(6), 1344–1360, doi: 10.1007/s00376-010-9129-9.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yushan Song
    • 1
    • 2
  • Daren Lü
    • 1
    Email author
  • Qian Li
    • 1
  • Jianchun Bian
    • 1
  • Xue Wu
    • 1
  • Dan Li
    • 1
  1. 1.Key Laboratory of Middle Atmosphere and Global Environment ObservationInstitute of Atmospheric Physics, Chinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations