Advances in Atmospheric Sciences

, Volume 32, Issue 12, pp 1575–1582 | Cite as

Use of incremental analysis updates in 4D-Var data assimilation

  • Banglin ZhangEmail author
  • Vijay Tallapragada
  • Fuzhong Weng
  • Jason Sippel
  • Zaizhong Ma


The four-dimensional variational (4D-Var) data assimilation systems used in most operational and research centers use initial condition increments as control variables and adjust initial increments to find optimal analysis solutions. This approach may sometimes create discontinuities in analysis fields and produce undesirable spin ups and spin downs. This study explores using incremental analysis updates (IAU) in 4D-Var to reduce the analysis discontinuities. IAU-based 4D-Var has almost the same mathematical formula as conventional 4D-Var if the initial condition increments are replaced with time-integrated increments as control variables.

The IAU technique was implemented in the NASA/GSFC 4D-Var prototype and compared against a control run without IAU. The results showed that the initial precipitation spikes were removed and that other discontinuities were also reduced, especially for the analysis of surface temperature.


data assimilation incremental analysis updates 4D-Var convergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 1256–1271.CrossRefGoogle Scholar
  2. Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4d-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367–1387.CrossRefGoogle Scholar
  3. Derber, J. C., 1989: A variational continuous assimilation technique. Mon. Wea. Rev., 117, 2437–2446.CrossRefGoogle Scholar
  4. Fisher, M., 1998: Minimization algorithms for variational data assimilation. Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling, ECMWF, 364–385.Google Scholar
  5. Giering, R., T. Kaminski, R. Todling, and S.-J. Lin, 2003: Generating the tangent linear and adjoint models of the DAO finite volume GCM’s dynamical core by means of TAF. EGS-AGUEUG Joint Assembly, Abstracts, 11680, France.Google Scholar
  6. Le Dimet, F.-X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations. Tellus, 38A, 97–110.CrossRefGoogle Scholar
  7. Polavarapu, S., M. Tanguay, and L. Fillion, 2000: Fourdimensional variational Data assimilation with digital filter initialization. Mon. Wea. Rev., 128, 3491–2510.CrossRefGoogle Scholar
  8. Polavarapu, S., S. Z. Ren, A. M. Clayton, S. David, and Y. Rochon, 2004: On the relationship between incremental analysis updating and incremental digital filtering. Mon. Wea. Rev., 132, 3495–2502.CrossRefGoogle Scholar
  9. Rienecker, M., and Coauthors, 2008: The GEOS-5 data assimilation system-documentation of versions 5.0.1, 5.1.0, and 5.2.0. Technical Report Series on Global Modeling and Data Assimilation, NASA TM104606.Google Scholar
  10. Wu, W. S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 2905–2916.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Banglin Zhang
    • 1
    • 2
    Email author
  • Vijay Tallapragada
    • 2
  • Fuzhong Weng
    • 3
  • Jason Sippel
    • 1
    • 2
  • Zaizhong Ma
    • 4
  1. 1.I.M. System Group, Inc.College ParkUSA
  2. 2.NOAA NCEP Environmental Modeling CenterCollege ParkUSA
  3. 3.NOAA Center for Satellite Applications and ResearchCollege ParkUSA
  4. 4.Joint Center for Satellite Data AssimilationCollege ParkUSA

Personalised recommendations