Advances in Atmospheric Sciences

, Volume 32, Issue 11, pp 1473–1480 | Cite as

Strengthening of the Walker circulation under globalwarming in an aqua-planet general circulation model simulation

  • Tim Li
  • Lei Zhang
  • Hiroyuki Murakami


Most climate models project a weakening of theWalker circulation under global warming scenarios. It is argued, based on a global averaged moisture budget, that this weakening can be attributed to a slower rate of rainfall increase compared to that of moisture increase, which leads to a decrease in ascending motion. Through an idealized aqua-planet simulation in which a zonal wavenumber-1 SST distribution is prescribed along the equator, we find that the Walker circulation is strengthened under a uniform 2-K SST warming, even though the global mean rainfall–moisture relationship remains the same. Further diagnosis shows that the ascending branch of the Walker cell is enhanced in the upper troposphere but weakened in the lower troposphere. As a result, a “double-cell” circulation change pattern with a clockwise (anti-clockwise) circulation anomaly in the upper (lower) troposphere forms, and the upper tropospheric circulation change dominates. The mechanism for the formation of the “double cell” circulation pattern is attributed to a larger (smaller) rate of increase of diabatic heating than static stability in the upper (lower) troposphere. The result indicates that the future change of the Walker circulation cannot simply be interpreted based on a global mean moisture budget argument.


Walker circulation global warming aqua-planet simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674–701.CrossRefGoogle Scholar
  2. Bayr, T., D. Dommenget, T. Martin, and S. B. Power, 2014: The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability. Climate Dyn., 43, 2747–2763, doi: 10.1007/s00382-014-2091-y.CrossRefGoogle Scholar
  3. Clement, A. C., R. S. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 2190–2196.CrossRefGoogle Scholar
  4. Dinezio, P., A. Clement, and G. A. Vecchi, 2010: Reconciling differing views of tropical Pacific climate change. EOS, Transactions American Geophysical Union, 91(16), 141–142.CrossRefGoogle Scholar
  5. Dinezio, P. N., A. C. Clement, G. A. Vecchi, B. Soden, B. P. Kirtman, and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 4873–4892.CrossRefGoogle Scholar
  6. Endo, H., A. Kitoh, T. Ose, R. Mizuta, and S. Kusunoki, 2012: Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi-sea surface temperature ensemble experiments with high-resolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs). J. Geophys. Res., 117, D16118.CrossRefGoogle Scholar
  7. Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699.CrossRefGoogle Scholar
  8. Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed., Academic Press, 535 pp.Google Scholar
  9. Hsu, P.-C., and T. Li, 2012: Is “rich-get-richer” valid for Indian Ocean and Atlantic ITCZ? Geophys. Res. Lett., 39, L13705, doi: 10.1029/2012GL052399.Google Scholar
  10. Huang, X. L., H. W. Chuang, A. Dessler, X. H. Chen, K. Minschwaner, Y. Ming, and V. Ramaswamy, 2013: A radiativeconvective equilibrium perspective of weakening of the tropical walker circulation in response to global warming. J. Climate, 26(5), 1643–1653.CrossRefGoogle Scholar
  11. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller, Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.Google Scholar
  12. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., and Coauthors, Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 950 pp.Google Scholar
  13. Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/ detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784–2802.CrossRefGoogle Scholar
  14. Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Emanuel and Raymond, Eds., Amer. Meteor. Soc., 165–170.Google Scholar
  15. Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled oceanatmosphere model. J. Climate, 8, 2181–2199.CrossRefGoogle Scholar
  16. Merrifield, M. A., 2011: A shift in western Tropical Pacific Sea level trends during the 1990s. J. Climate, 24, 4126–4138.CrossRefGoogle Scholar
  17. Mizuta, R., and Coauthors, 2012: Climate simulations using the improved MRI-AGCM with 20-km grid. J. Meteor. Soc. Japan, 90A, 235–260.Google Scholar
  18. Murakami, H., R. Mizuta, and E. Shindo, 2012: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dyn., 39(9–10), 2569–2584.CrossRefGoogle Scholar
  19. Sandeep, S., F. Stordal, P. D. Sardeshmukh, and G. P. Compo, 2014: Pacific Walker Circulation variability in coupled and uncoupled climate models. Climate Dyn., 43, 103–117, doi: 10.1007/s00382-014-2135-3.CrossRefGoogle Scholar
  20. Schneider, T., P. A. O’Gorman, and X. J. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, 302–323.CrossRefGoogle Scholar
  21. Shine, K. P., R. G. Derwent, D. J. Wuebbles, and J.-J. Morcrette, 1990: Radiative forcing of climate. Climate Change: The IPCC Scientific Assessment, Houghton et al., Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 41–68.Google Scholar
  22. Singh, M. S, and P. A. O’Gorman, 2012: Upward shift of the atmospheric general circulation under global warming: Theory and simulations. J. Climate, 25(23), 8259–8276.CrossRefGoogle Scholar
  23. Stocker, T. F., 2001: Climate Change 2001: The Scientific Basis. Chapter 7, J. T. Houghton, Eds., Cambridge Univ. Press, Cambridge, 417–470.Google Scholar
  24. Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation, J. Climate, 20, 4316–4340.CrossRefGoogle Scholar
  25. Vecchi, G. A., A. Clement, and B. J. Soden, 2008: Examining the tropical Pacific’s response to global warming. Eos, Transactions American Geophysical Union, 89, 81–83.CrossRefGoogle Scholar
  26. Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73–76.CrossRefGoogle Scholar
  27. Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–627.CrossRefGoogle Scholar
  28. Yoshimura, H., R. Mizuta, and H. Murakami, 2015: A spectral cumulus parameterization scheme interpolating between two convective updrafts with semi-Lagrangian calculation of transport by compensatory subsidence. Mon. Wea. Rev., 143, 597–621.CrossRefGoogle Scholar
  29. Yukimoto, S. H., and Coauthors, 2011: Meteorological research institute-earth system model Version 1 (MRI-ESM1)—Model description. Technical Reports of the Meteorological Research Institute, No. 64, 96 pp.Google Scholar
  30. Zhang, L., and T. Li, 2014: A simple analytical model for understanding the formation of sea surface temperature patterns under global warming. J. Climate, 27, 8413–8421.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.AORC/IPRC and Department of Atmospheric SciencesUniversity of HawaiiHonoluluUSA
  2. 2.International Laboratory on Climate and Environment Change and Key Laboratory of Meteorological DisasterNanjing University of Information Science and TechnologyNanjingChina
  3. 3.Climate Research DepartmentMeteorological Research InstituteTsukuboda, IbarakiJapan

Personalised recommendations