Advances in Atmospheric Sciences

, Volume 32, Issue 10, pp 1354–1364 | Cite as

Observation of a summer tropopause fold by ozonesonde at Changchun, China: Comparison with reanalysis and model simulation

  • Dan Li
  • Jianchun BianEmail author


Tropopause folds are one of the key mechanisms of stratosphere–troposphere exchange (STE) in extratropical regions, transporting ozone-rich stratospheric air into the middle and lower troposphere. Although there have been many studies of tropopause folds that have occurred over Europe and North America, a very limited amount of work has been carried out over northeastern Asia. Ozonesondes produced by the Institute of Atmospheric Physics were launched in Changchun (43.9°N, 125.2°E), Northeast China, in June 2013, and observed an ozone-enriched layer with thickness of 3 km and an ozone peak of 180 ppbv at 6 km in the troposphere. The circulation field from the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) dataset shows that this ozone peak was caused by a tropopause fold associated with a jet stream at the eastern flank of the East Asian trough. By analyzing the ozone data from the ozone monitoring instrument and Weather Research and Forecasting model with Chemistry (WRF-Chem) simulations, it was found that a high ozone concentration tongue originating from the lower stratosphere at high latitude (near central Siberia) intruded into the middle troposphere over Changchun between 5 and 8 km on 12 June 2013. The high-resolution WRF-Chem simulation was capable of describing events such as the tropopause fold that occurred on the cyclonic shear side of the jet stream. In addition, the TRAJ3D trajectory model was used to trace the origin of measured secondary ozone peaks in the middle troposphere back, for example, to stratospheric intrusion through the tropopause fold.

Key words

tropopause fold ozonesonde WRF-Chem model stratospheric intrusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balis, D., M. Kroon, M. E. Koukouli, E. J. Brinksma, G. Labow, J. P. Veefkind, and R. D. McPeters, 2007: Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations. J. Geophys. Res., 112, D24S46, doi:  10.1029/2007JD008796.
  2. Baray, J. L., V. Daniel, G. Ancellet, and B. Legras, 2000: Planetary-scale tropopause folds in the southern subtropics. Geophys. Res. Lett., 27(3), 353–356.CrossRefGoogle Scholar
  3. Baray, J.-L., V. Duflot, F. Posny, J.-P. Cammas, A. M. Thompson, F. Gabarrot, J. L. Bonne, and G. Zeng, 2012: One year ozonesonde measurements at Kerguelen Island (49.2°S, 70.1°E): Influence of stratosphere-to-troposphere exchange and long-range transport of biomass burning plumes. J. Geophys. Res., 117, D06305, doi:  10.1029/2011JD016717.
  4. Beuermann, J., P. Konopka, D. Brunner, O. Bujok, G. Günther, D. S. McKenna, J. Lelieveld, R. Müller, and C. Schiller, 2002: High-resolution measurements and simulation of stratospheric and tropospheric intrusions in the vicinity of the polar jet stream. Geophys. Res. Lett., 29, 18-1–18-4, doi:  10.1029/2001GL014162.
  5. Bowman, K. P., and G. D. Carrie, 2002: The mean-meridional transport circulation of the troposphere in an idealized GCM. J. Atmos. Sci., 59, 1502–1514.CrossRefGoogle Scholar
  6. Bowman, K. P., 1993: Large-scale is entropic mixing properties of the Antarctic polar vortex from analyzed winds. J. Geophys. Res., 98, 23 013–23 027.CrossRefGoogle Scholar
  7. Bush, A. B. G., and W. R. Peltier, 1994: Tropopause folds and synoptic-scale baroclinic wave life cycles. J. Atmos. Sci., 51, 1581–1604.CrossRefGoogle Scholar
  8. Chen, D., D. R. Lü, and Z. Y. Chen, 2014: Simulation of the stratosphere-troposphere exchange process in a typical cold vortex over Northeast China. Science China Earth Sciences, 57, 1452–1463, doi:  10.1007/s11430-014-4864-x.CrossRefGoogle Scholar
  9. Danielsen, E. F., 1968: Project Springfield Report. DASA 1517, Defence Atomic Support Agency, Washington D. C. 97 pp.Google Scholar
  10. Dee, D. P., S. M. Uppala, A. J. Simmons, and P. Berrisford, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.CrossRefGoogle Scholar
  11. Elbern, H., J. Hendricks, and A. Ebel, 1998: A climatology of tropopause folds by global analyses. Theor. Appl. Climatol., 59, 181–200.CrossRefGoogle Scholar
  12. Emmons, L. K., and Coauthors, 2010: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 3, 43–67, doi:  10.5194/gmd-3-43-2010.CrossRefGoogle Scholar
  13. Fischer, H., M. de Reus, M. Traub, J. Williams, J. Lelieveld, J. de Gouw, C. Warneke, H. Schlager, A. Minikin, R. Scheele, and P. Siegmund, 2000: Tracer correlations in the northern high-latitude lowermost stratosphere: Influence of crosstropopause mass exchange. Geophys. Res. Lett., 27, 97–100.CrossRefGoogle Scholar
  14. Gouget, H., G. Vaughan, A. Marenco, and H. G. J. Smit, 2000: Decay of a cut-off low and contribution to stratosphere-troposphere exchange. Quart. J. Roy. Meteor. Soc., 126, 1117–1141.CrossRefGoogle Scholar
  15. Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29(14), 38-1–38-4, doi:  10.1029/2002GL015311.
  16. Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock,, and B. Eder, 2005: Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39, 6957–6975.CrossRefGoogle Scholar
  17. Hocking, W. K., T. Carey-Smith, D. W. Tarasick, P. S. Argall, K. Strong, Y. Rochon, I. Zawadzki, and P. A. Taylor, 2007: Detection of stratospheric ozone intrusions by windprofiler radars. Nature, 450, 281–284, doi:  10.1038/nature06312.CrossRefGoogle Scholar
  18. Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403–439, doi:  10.1029/95RG02097.CrossRefGoogle Scholar
  19. Lamarque, J. F., and P. G. Hess, 1994: Cross-tropopause mass exchange and potential vorticity budget in a simulated tropopause folding. J. Atmos. Sci., 51, 2246–2269, doi:  10.1175/1520-0469.CrossRefGoogle Scholar
  20. Lelieveld, J., and F. J. Dentener, 2000: What controls tropospheric ozone? J. Geophys. Res., 105, 3531–3551.CrossRefGoogle Scholar
  21. Li, D., J. C. Bian, and Q. J. Fan, 2015: A deep stratospheric intrusion associated with an intense cut-off low event over East Asia. Science China: Earth Sciences, 58, 116–128, doi:  10.1007/s11430-014-4977-2.CrossRefGoogle Scholar
  22. Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22 (6), 1065–1092.CrossRefGoogle Scholar
  23. Liu, C. X., Y. Liu, X. Liu, and K. Chance, 2013: Dynamical and chemical features of a cutoff low over northeast China in July dy2007: Results from satellite measurements and reanalysis. Adv. Atmos. Sci., 30(2), 525–540, doi:  10.1007/s00376-012-2086-8.CrossRefGoogle Scholar
  24. Pan, L. L., K. P. Bowman, M. Shapiro, W. J. Randel, R. S. Gao, T. Campos, C. Davis, S. Schauffler, B. A. Ridley, J. C. Wei, and C. Barnet, 2007: Chemical behavior of the tropopause observed during the stratosphere-troposphere analyses of regional transport experiment. J. Geophys. Res., 112, D18110, doi:  10.1029/2007JD008645.
  25. Pan, L. L., W. J. Randel, B. L. Gary, M. J. Mahoney, and E. J. Hintsa, 2004: Definitions and sharpness of the extratropical tropopause: A trace gas perspective. J. Geophys. Res., 109, D23103, doi:  10.1029/2004JD004982.
  26. Randel, W. J., D. J. Seidel, and L. L. Pan, 2007: Observational characteristics of double tropopauses. J. Geophys. Res., 112, D07309, doi:  10.1029/2006JD007904.
  27. Ravetta, F., G. Ancellet, J. Kowol-Santen, R. Wilson, and D. Nedeljkovic, 1999: Ozone, temperature, and wind field measurements in a tropopause fold: Comparison with a mesoscale model simulation. Mon. Wea. Rev., 127, 2641–2653.CrossRefGoogle Scholar
  28. Reed, R. J., 1955: A study of a characteristic type of upper-level frontogenesis. J. Atmos. Sci., 12, 226–237.Google Scholar
  29. Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci., 37, 994–1004, doi:  10.1175/1520-0469(1980)037<0994:TMWTFA>2.0.CO;2.CrossRefGoogle Scholar
  30. Sørensen, J. H., and N. W. Nielsen, 2001: Intrusion of stratospheric ozone to the free troposphere through tropopause folds-a case study. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26, 801–806.CrossRefGoogle Scholar
  31. Sprenger M. and Wernli, H. 2003: A northern hemispheric climatology of cross-tropopause exchange for the ERA-15 time period. J. Geophys. Res., 108(D12), 8521, doi:  10.1029/2002JD002636.CrossRefGoogle Scholar
  32. Stockwell, W. R., P. Middleton, J. S. Chang, and X. Y. Tang, 1990: The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res., 95, 16 343–16 367.Google Scholar
  33. Stohl, A., and Coauthors, 2003: Stratosphere-troposphere exchange: A review, and what we have learned from STACCATO. J. Geophys. Res., 108(D12), 8516, doi:  10.1029/2002JD002490.CrossRefGoogle Scholar
  34. Trickl, T., N. Bärtsch-Ritter, H. Eisele, M. Furger, R. Mücke, M. Sprenger, and A. Stohl, 2011: High-ozone layers in the middle and upper troposphere above Central Europe: Potential import from the stratosphere along the subtropical jet stream. Atmos. Chem. Phys., 11, 9343–9366, doi:  10.5194/acp-11-9343-2011.CrossRefGoogle Scholar
  35. Tyrlis, E., J. Lelieveld, and B. Steil, 2013: The summer circulation over the eastern Mediterranean and the Middle East: Infiuence of the South Asian monsoon. Climate Dyn., 40, 1103–1123, doi:  10.1007/s00382-012-1528-4.CrossRefGoogle Scholar
  36. Wang, G. C., Q. X. Kong, Y. J. Xuan, X. W. Wan, H. B. Chen, and S. Q. Ma, 2003: Development and application of ozonesonde system in China. Advance in Earth Sciences, 18, 471–475. (in Chinese)Google Scholar
  37. Weigel, K., and Coauthors, 2012: A stratospheric intrusion at the subtropical jet over the Mediterranean Sea: Air-borne remote sensing observations and model results. Atmos. Chem. Phys., 12, 8423–8438, doi:  10.5194/acp-12-8423-2012.CrossRefGoogle Scholar
  38. World Meteorological Organization, 1957: Meteorology–A threedimensional science: Second session of the Commission for Aerology. WMO Bull., 4(4), 134–138.Google Scholar
  39. Xuan, Y. J., S. Q. Ma, H. B. Chen, G. C. Wang, Q. X. Kong, Q. Zhao, and X.W. Wan, 2004: Intercomparisons of GPSO3 and Vaisala ECC ozonesondes. Plateau Meteorology, 23(3), 394–399. (in Chinese)Google Scholar
  40. Yang, J., and D. R. Lü, 2003: A simulation study of stratosphere-troposphere exchange due to cut-off-low over Eastern Asia. Chinese J. Atmos. Sci., 27, 1031–1044. (in Chinese)Google Scholar
  41. Yang, J., and D. R. Lü, 2004: Simulation of stratosphere-troposphere exchange effecting on the distribution of ozone over Eastern Asia. Chinese J. Atmos. Sci., 28, 579–589. (in Chinese)Google Scholar
  42. Zhang, J. Q., Y. J. Xuan, X. A. Xia, M. Y. Liu, X. L. Yan, L. Pang, Z. X. Bai, and X. W. Wan, 2014a: Performance evaluation of a self-developed ozonesonde and its application in an intensive observational campaign. Atmos. Oceanic Sci. Lett., 7, 175–179, doi:  10.3878/j.issn.1674-2834.13.0089.CrossRefGoogle Scholar
  43. Zhang, J. Q., Y. J. Xuan, X. L. Yan, M. Y. Liu, H. M. Tian, X. A. Xia, L. Pang, and X. D. Zheng, 2014b: Development and preliminary evaluation of a double-cell ozonesonde. Adv. Atmos. Sci., 31, 938–947, doi:  10.1007/s00376-013-3104-1.CrossRefGoogle Scholar
  44. Zhang, M., W. S. Tian, L. Chen, and D. R. Lü, 2010: Crosstropopause mass exchange associated with a tropopause fold event over the northeastern Tibetan Plateau. Adv. Atmos. Sci., 27(6), 1344–1360, doi:  10.1007/s00376-010-9129-9.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations