Advances in Atmospheric Sciences

, Volume 32, Issue 11, pp 1481–1492 | Cite as

Satellite measurements of the Madden–Julian oscillation in wintertime stratospheric ozone over the Tibetan Plateau and East Asia

  • Yuli Zhang
  • Yi Liu
  • Chuanxi Liu
  • V. F. Sofieva


We investigate the Madden–Julian Oscillation (MJO) signal in wintertime stratospheric ozone over the Tibetan Plateau and East Asia using the harmonized dataset of satellite ozone profiles. Two different MJO indices—the all-season Real-Time multivariate MJO index (RMM) and outgoing longwave radiation-based MJO index (OMI)—are used to compare the MJO-related ozone anomalies. The results show that there are pronounced eastward-propagating MJO-related stratospheric ozone anomalies (mainly within 20–200 hPa) over the subtropics. The negative stratospheric ozone anomalies are over the Tibetan Plateau and East Asia in MJO phases 4–7, when MJO-related tropical deep convective anomalies move from the equatorial Indian Ocean towards the western Pacific Ocean. Compared with the results based on RMM, the MJO-related stratospheric column ozone anomalies based on OMI are stronger and one phase ahead. Further analysis suggests that different sampling errors, observation principles and retrieval algorithms may be responsible for the discrepancies among different satellite measurements. The MJO-related stratospheric ozone anomalies can be attributed to the MJO-related circulation anomalies, i.e., the uplifted tropopause and the northward shifted westerly jet in the upper troposphere. Compared to the result based on RMM, the upper tropospheric westerly jet may play a less important role in generating the stratospheric column ozone anomalies based on OMI. Our study indicates that the circulation-based MJO index (RMM) can better characterize the MJO-related anomalies in tropopause pressure and thus the MJO influence on atmospheric trace gases in the upper troposphere and lower stratosphere, especially over subtropical East Asia.


Madden–Julian Oscillation stratospheric ozone tropopause subtropical jet stream 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bertaux, J. L., and Coauthors, 2010: Global ozone monitoring by occultation of stars: An overview of GOMOS measurements on ENVISAT. Atmos. Chem. Phys., 10, 12091–12148, doi: 10.5194/acp-10–12091-2010.CrossRefGoogle Scholar
  2. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/ qj.828.CrossRefGoogle Scholar
  3. Fischer, H., and Coauthors, 2008: MIPAS: An instrument for atmospheric and climate research. Atmos. Chem. Phys., 8, 2151–2188, doi: 10.5194/acp-8–2151-2008.CrossRefGoogle Scholar
  4. Garfinkel, C. I., S. B. Feldstein, D. W. Waugh, C. Yoo, and S. Lee, 2012: Observed connection between stratospheric sudden warmings and the Madden–Julian Oscillation. Geophys. Res. Lett., 39, L18807, doi: 10.1029/2012GL053144.Google Scholar
  5. Gao, X. H., and J. L. Stanford 1990: Low-frequency oscillations in total ozone measurements. J. Geophys. Res., 95, 13797–13806.CrossRefGoogle Scholar
  6. Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 1697–1715. doi: http://dx.doi. org/10.1175/MWR-D-13-00301.1.CrossRefGoogle Scholar
  7. Kyröla, E., and Coauthors, 2004: GOMOS on Envisat: an overview. Advances in Space Research, 33, 1020–1028.CrossRefGoogle Scholar
  8. Lau, W. K.-M., and D. E. Waliser, 2012: Intraseasonal Variability in the Atmosphere-ocean Climate System. 2nd ed. Springer, Heidelberg, Germany, 581 pp.CrossRefGoogle Scholar
  9. Li, K.-F., B. Tian, D. E. Waliser, M. J. Schwartz, J. L. Neu, J. R. Worden, and Y. L. Yung, 2012: Vertical structure of MJOrelated subtropical ozone variations from MLS, TES, and SHADOZ data. Atmos. Chem. Phys., 12, 425–436.CrossRefGoogle Scholar
  10. Liebman, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.Google Scholar
  11. Liu, C. X., Y. Liu, Z. N. Cai, S. T. Gao, D. R. Lu, and E. Kyrola, 2009: A Madden-Julian Oscillation-triggered record ozone minimum over the Tibetan Plateau in December 2003 and its association with stratospheric “low-ozone pockets”. Geophys. Res. Lett., 36, L15830, doi: 10.1029/2009GL039025.Google Scholar
  12. Liu, C. X., Y. Liu, Z. N. Cai, S. T. Gao, J. C. Bian, X. Liu, and K. Chance, 2010: Dynamic formation of extreme ozone minimum events over the Tibetan Plateau during northern winters 1987–2001. J. Geophys. Res., 115, D18311, doi: 10.1029/2009JD013130.CrossRefGoogle Scholar
  13. Liu, C. X., B. J. Tian, K.-F. Li, G. L. Manney, N. J. Liversey, Y. L. Yung, and D. E. Waliser, 2014: Northern Hemisphere mid-winter vortex-displacement and vortex-split stratospheric sudden warmings: Influence of the Madden-Julian Oscillation and Quasi-Biennial Oscillation. J. Geophys. Res., 119, 12599–12620, doi: 10.1002/2014JD021876.Google Scholar
  14. Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.CrossRefGoogle Scholar
  15. Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123.CrossRefGoogle Scholar
  16. Rahpoe, N., C. von Savigny, M. Weber, A. V. Rozanov, H. Bovensmann, and J. P. Burrows, 2013: Error budget analysis of SCIAMACHY limb ozone profile retrievals using the SCIATRAN model. Atmospheric Measurement Techniques, 6, 2825–2837, doi: 10.5194/amt-6-2825-2013.CrossRefGoogle Scholar
  17. Sabutis, J. L., J. L. Stanford, and K. P. Bowman, 1987: Evidence for 35-50 day low frequency oscillations in total ozone mapping spectrometer data. Geophys. Res. Lett., 14, 945–947.CrossRefGoogle Scholar
  18. Sofieva, V. F., and Coauthors, 2013: Harmonized dataset of ozone profiles from satellite limb and occultation measurements. Earth System Science Data, 5, 349–363, doi: 10.5194/essd-5-349-2013.CrossRefGoogle Scholar
  19. Tamminen, J., and Coauthors, 2010: GOMOS data characterisation and error estimation. Atmos. Chem. Phys., 10, 9505–9519, doi: 10.5194/acp-10–9505-2010.CrossRefGoogle Scholar
  20. Tian, B. J., Y. L. Yung, D. E. Waliser, T. Tyranowski, L. Kuai, E. J. Fetzer, and F. W. Irion, 2007: Intraseasonal variations of the tropical total ozone and their connection to the Madden-Julian Oscillation. Geophys. Res. Lett., 34, L08704, doi: 10.1029/2007GL029451.Google Scholar
  21. Tian, B. J., D. E. Waliser, R. A. Kahn, and S. Wong, 2011: Modulation of Atlantic aerosols by the Madden-Julian Oscillation. J. Geophys. Res., 116, D15108, doi: 10.1029/2010JD015201.CrossRefGoogle Scholar
  22. Tian, B., and D. E. Waliser, 2012: Chemical and biological impacts. Intraseasonal Variability in the Atmosphere-Ocean Climate System, 2nd ed., W. K. M. Lau and D. E. Waliser, Eds., Springer-Verlag, Berlin, Heidelberg, 569–585.Google Scholar
  23. Ventrice, M. J., M. C. Wheeler, H. H. Hendon, C. J. Schreck III, C. D. Thorncroft, and G. N. Kiladis, 2013: A modified multivariate Madden-Julian Oscillation index using velocity potential. Mon. Wea. Rev., 141, 4197–4210, doi: 10.1175/MWR-D-12–00327.1.CrossRefGoogle Scholar
  24. Waliser, D. E., 2012: Predictability and forecasting. Intraseasonal Variability in the Atmosphere-Ocean Climate System. 2nd ed., W. K. M. Lau and D. E. Waliser, Eds., Springer-Verlag, Berlin, Heidelberg, 433–476.Google Scholar
  25. Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932.CrossRefGoogle Scholar
  26. Zhang, C. D., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi: 10.1029/2004RG000158.Google Scholar
  27. Zhang, C. D., 2013: Madden-Julian Oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 1849–1870.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yuli Zhang
    • 1
    • 2
  • Yi Liu
    • 1
    • 3
  • Chuanxi Liu
    • 1
    • 3
  • V. F. Sofieva
    • 4
  1. 1.Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Joint Center for Global Change StudiesBeijingChina
  4. 4.Finnish Meteorological InstituteHelsinkiFinland

Personalised recommendations