Advertisement

Advances in Atmospheric Sciences

, Volume 32, Issue 8, pp 1027–1037 | Cite as

Trends of extreme precipitation in eastern China and their possible causes

  • Run Liu
  • Shaw Chen Liu
  • Ralph J. Cicerone
  • Chein-Jung Shiu
  • Jun Li
  • Jingli Wang
  • Yuanhang Zhang
Article

Abstract

Significant increases of heavy precipitation and decreases of light precipitation have been reported over widespread regions of the globe. Global warming and effects of anthropogenic aerosols have both been proposed as possible causes of these changes. We examine data from urban and rural meteorological stations in eastern China (1955–2011) and compare them with Global Precipitation Climatology Project (GPCP) data (1979–2007) and reanalysis data in various latitude zones to study changes in precipitation extremes. Significant decreases in light precipitation and increases in heavy precipitation are found at both rural and urban stations, as well as low latitudes over the ocean, while total precipitation shows little change. Characteristics of these changes and changes in the equatorial zone and other latitudes suggest that global warming rather than aerosol effects is the primary cause of the changes. In eastern China, increases of annual total dry days (28 days) and ≥10 consecutive dry days (36%) are due to the decrease in light precipitation days, thereby establishing a causal link among global warming, changes in precipitation extremes, and higher meteorological risk of floods and droughts. Further, results derived from the GPCP data and reanalysis data suggest that the causal link exists over widespread regions of the globe.

Key words

extreme precipitation global warming aerosols meteorological risk of floods and droughts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, A. S., and Coauthors, 1978: Summary of METROMEX, Volume 2: Causes of Precipitation Anomalies. Illinois State Water Survey, Urbana, Bulletin 63, 399 pp.Google Scholar
  2. Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230, doi:  10.1126/science.245.4923.1227.CrossRefGoogle Scholar
  3. Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224–232, doi:  10.1038/nature01092.CrossRefGoogle Scholar
  4. Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 1337–1342, doi:  10.1126/science.1092779.CrossRefGoogle Scholar
  5. Benestad, R. E., 2013: Association between trends in daily rainfall percentiles and the global mean temperature. J. Geophys. Res., 118, 10 802–810, doi:  10.1002/jgrd.50814.Google Scholar
  6. Boucher, O., and Coauthors, 2013: Clouds and Aerosols. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change., T. F. Stocker, and Coauthors, Eds., Cambridge Univ. Press, Ch. 7, 571–685.Google Scholar
  7. Chou, C., J. C. H. Chiang, C.-W. Lan, C.-H. Chung, Y.-C. Liao, and C.-J. Lee, 2013: Increase in the range between wet and dry season precipitation. Nature Geoscience, 6, 263–267, doi:  10.1038/ngeo1744.CrossRefGoogle Scholar
  8. Cubasch, U., and Coauthors, 2001: Projections of Future Climate Change. Climate Change 2001: The Scientific Basis., J. T. Houghton and Y. H. Ding, Eds., Cambridge Univ. Press, Ch. 9, 524–582.Google Scholar
  9. Dai, A., P. J. Lamb, K. E. Trenberth, M. Hulme, P. D. Jones, and P. P. Xie, 2004: The recent Sahel drought is real. Inter. J. Climatol., 24, 1323–1331, doi:  10.1002/joc.1083.CrossRefGoogle Scholar
  10. Dai, J., Y. Xing, D. Rosenfeld, and X. H. Xu, 2008: The suppression of aerosols to the orographic precipitation in the Qinling Mountains. Chinese J. Atmos. Sci., 32, 1319–1332 (in Chinese).Google Scholar
  11. Fujibe, F., N. Yamazaki, M. Katsuyama, and K. Kobayashi, 2005: The increasing trend of intense precipitation in Japan based on four-hourly data for a hundred years. Sola, 1, 41–44, doi:  10.2151/sola.2005.012.CrossRefGoogle Scholar
  12. Gong, D.-Y., C.-H. Ho, D. L. Chen, Y. Qian, Y.-S. Choi, and J. Kim, 2007: Weekly cycle of aerosol-meteorology interaction over China. J. Geophys. Res., 112, D22202, doi:  10.1029/2007jd008888.CrossRefGoogle Scholar
  13. Goswami, B. N., V. Venugopal, D. Sengupta, M. S. Madhusoodanan, and P. K. Xavier, 2006: Increasing trend of extreme rain events over India in a warming environment. Science, 314, 1442–1445, doi:  10.1126/science.1132027.CrossRefGoogle Scholar
  14. Groisman, P. Y., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 1326–1350, doi:  10.1175/jcli3339.1.CrossRefGoogle Scholar
  15. Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 6831–6864, doi:  10.1029/96jd03436.CrossRefGoogle Scholar
  16. Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699, doi:  10.1175/jcli3990.1.CrossRefGoogle Scholar
  17. Ho, C.-H., J.-H. Kim, W. K. M. Lau, K.-M. Kim, D. Gong, and Y.-B. Lee, 2005: Interdecadal changes in heavy rainfall in China during the northern summer. The Journal of Terrestrial, Atmospheric and Oceanic Sciences, 16, 1163–1176.Google Scholar
  18. Jiang, J. H., H. Su, M. R. Schoeberl, S. T. Massie, P. Colarco, S. Platnick, and N. J. Livesey, 2008: Clean and polluted clouds: Relationships among pollution, ice cloud, and precipitation in South America. Geophys. Res. Lett., 35, L10804, doi:  10.1029/2010gl043792.CrossRefGoogle Scholar
  19. Jiang, Z. H., Y. C. Shen, T. T. Ma, P. M. Zhai, and S. D. Fang, 2014: Changes of precipitation intensity spectra in different regions of mainland China during 961–2006. Journal of Meteorological Research, 28, 1085–1098.CrossRefGoogle Scholar
  20. Jones, P. D., and A. Moberg, 2003: Hemispheric and largescale surface air temperature variations: An extensive revision and an update to 2001. J. Climate., 16, 206–223, doi:  10.1175/1520-0442(2003)016<0206:HALSSA>2.0.CO;2.CrossRefGoogle Scholar
  21. Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteorol. Soc., 79, 231–241, doi:  10.1175/1520-7(1998)079<0231:Stopaf>2.0.Co;2.CrossRefGoogle Scholar
  22. Klein Tank, A. M. G., and G. P. K¨onnen, 2003: Trends in indices of daily temperature and precipitation extremes in Europe, 1946-99. J. Climate, 16, 3665–3680, doi:  10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2.CrossRefGoogle Scholar
  23. Koren, I., J. V. Martins, L. A. Remer, and H. Afargan, 2008: Smoke invigoration versus inhibition of clouds over the Amazon. Science, 321, 946–949, doi:  10.1126/science.1159185.CrossRefGoogle Scholar
  24. Lau, K.-M., and H.-T. Wu, 2007: Detecting trends in tropical rainfall characteristics, 1979-2003. Int. J. Climatol., 27, 979–988, doi:  10.1002/joc.1454.CrossRefGoogle Scholar
  25. Lau, K.-M., and H.-T. Wu, 2011: Climatology and changes in tropical oceanic rainfall characteristics inferred from tropical rainfall measuring mission (TRMM) data (1998–2009). J. Geophys. Res., 116, D17111, doi:  10.1029/2011jd015827.CrossRefGoogle Scholar
  26. Lau, W. K.-M., H.-T. Wu, and K.-M. Kim, 2013: A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophys. Res. Lett., 40, 3163–3169, doi:  10.1002/grl.50420.CrossRefGoogle Scholar
  27. Levin, Z., and W. R. Cotton, 2009: Aerosol Pollution Impact on Precipitation: A Scientific Review. Springer Verlag, 386 pp.CrossRefGoogle Scholar
  28. Lin, J. C., T. Matsui, R. A. Pielke, and C. Kummerow, 2006: Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: a satellite-based empirical study. J. Geophys. Res., 111, D19204, doi:  10.1029/2005jd006884.CrossRefGoogle Scholar
  29. Liu, B. H., M. Xu, M. Henderson, and Y. Qi, 2005: Observed trends of precipitation amount, frequency, and intensity in China, 1960-2000. J. Geophys. Res., 110, D08103, doi:  10.1029/2004jd004864.CrossRefGoogle Scholar
  30. Liu, S. C., C. B. Fu, C.-J. Shiu, J.-P. Chen, and F. T. Wu, 2009: Temperature dependence of global precipitation extremes. Geophys. Res. Lett., 36, L17702, doi:  10.1029/2009gl040218.CrossRefGoogle Scholar
  31. Lu, Z., and Coauthors, 2010: Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000. Atmos. Chem. Phys., 10, 6311–6331, doi:  10.5194/acp-10-6311-2010.CrossRefGoogle Scholar
  32. Manton, M. J., and Coauthors, 2001: Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. Int. J. Climatol., 21, 269–284, doi:  10.1002/joc.610.CrossRefGoogle Scholar
  33. Mitchell, J. F. B., C. A. Wilson, and W. M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113, 293–322, doi:  10.1256/smsqj.47516.CrossRefGoogle Scholar
  34. Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693–712, doi:  10.1002/joc.1181.CrossRefGoogle Scholar
  35. National Bureau of Statistics of China, 2012: China Statistical Yearbook 2012. China Statistics Press, Beijing, 1069 pp. (in Chinese)Google Scholar
  36. National Research Council, 2003: Critical Issues in Weather Modification Research. The National Acedemies Press, Washington, D. C., USA, 143 pp.Google Scholar
  37. Peterson, T. C., and R. S. Vose, 1997: An overview of the global historical climatology network temperature database. Bull. Amer. Meteor. Soc., 78, 2837–2849, doi:  10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2.CrossRefGoogle Scholar
  38. Qian, W. H., J. K. Fu, and Z. W. Yan, 2007: Decrease of light rain events in summer associated with a warming environment in China during 1961-2005. Geophys. Res. Lett., 34, L11705, doi:  10.1029/2007gl029631.CrossRefGoogle Scholar
  39. Qian, Y., D. Y. Gong, and R. Leung, 2010: Light rain events change over North America, Europe, and Asia for 1973–2009. Atmospheric Science Letters, 11, 301–306, doi:  10.1002/asl.298.CrossRefGoogle Scholar
  40. Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 2119–2124, doi:  10.1126/science.1064034.CrossRefGoogle Scholar
  41. Rosenfeld, D., and Coauthors, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 1309–1313, doi: 10.1126/science.1160606.CrossRefGoogle Scholar
  42. Semenov, V. A., and L. Bengtsson, 2002: Secular trends in daily precipitation characteristics: greenhouse gas simulation with a coupled AOGCM. Climate Dyn., 19, 123–140, doi:  10.1007/s00382-001-0218-4.CrossRefGoogle Scholar
  43. Shiu, C.-J., S. C. Liu, C. B. Fu, A. Dai, and Y. Sun, 2012: How much do precipitation extremes change in a warming climate? Geophys. Res. Lett., 39, L17707, doi:  10.1029/2012gl052762.Google Scholar
  44. Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296, doi:  10.1175/2007jcli2100.1.CrossRefGoogle Scholar
  45. Solomon, S., and Coauthors, 2007: Climate Change 2007: The Physical Scientific Basis. Contribution of Work Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, 996 pp.Google Scholar
  46. Streets, D. G., N. Y. Tsai, H. Akimoto, and K. Oka, 2000: Sulfur dioxide emissions in Asia in the period 1985–1997. Atmos. Environ., 34, 4413–4424, doi:  10.1016/S1352-2310(00)00187-4.CrossRefGoogle Scholar
  47. Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2007: Howoften will it rain? J. Climate, 20, 4801–4818, doi: 10.1175/jcli4263.1.CrossRefGoogle Scholar
  48. Tao, W.-K., J.-P. Chen, Z. Q. Li, C. E. Wang, and C. D. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, doi:  10.1029/2011rg000369.
  49. Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change, 39, 667–694, doi:  10.1023/A:1005319109110.CrossRefGoogle Scholar
  50. Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 1205–1217, doi:  10.1175/bams-84-9-1205.CrossRefGoogle Scholar
  51. Trenberth, K. E., and Coauthors, 2007: Observations: Surface and Atmospheric Climate Change. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, and Coauthors, Eds., Cambridge University Press, Ch. 9, 747–845.Google Scholar
  52. Vose, R. S., R. L. Schmoyer, P. M. Steurer, T. Peterson, R. Heim, T. Karl, and J. Eischeid, 1992: The Global Historical Climatology Network: Long–Term Monthly Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN., 325 pp, doi:  10.3334/CDIAC/cli.ndp041.Google Scholar
  53. Wang, F., and Q. S. Ge, 2012: Estimation of urbanization bias in observed surface temperature change in China from 1980 to 2009 using satellite land-use data. Chinese Science Bulletin, 57, 1708–1715.CrossRefGoogle Scholar
  54. Wang, X. L., and P. M. Zhai, 2008: Changes in China’s precipitation in various categories during 1957–2004. Journal of Tropical Meteorology, 24, 459–466.Google Scholar
  55. Warner, J., 1971: Smoke from sugar-cane fires and rainfall. Conference on Weather Modification, Camberra, ACT., Amer. Meteor. Soc., 191–192.Google Scholar
  56. Warner, J., and S. Twomey, 1967: The production of cloud nuclei by cane fires and the effect on cloud droplet concentration. J. Atmos. Sci., 24, 704–706, doi:  10.1175/1520-0469(1967)024<0704:Tpocnb>2.0.Co;2.CrossRefGoogle Scholar
  57. Wu, F. T., and C. B. Fu, 2013: Change of precipitation intensity spectra at different spatial scales under warming conditions. Chinese Science Bulletin, 58, 1385–1394.CrossRefGoogle Scholar
  58. Xie, P. P., and Coauthors, 2003: GPCP Pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16, 2197–2214, doi:  10.1175/2769.1.CrossRefGoogle Scholar
  59. Xue, Y., T. M. Smith, and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normals during 1871-2000. J. Climate, 16, 1601–1612, doi:  10.1175/1520-0442-16.10.1601.CrossRefGoogle Scholar
  60. Yang, H. L., H, Xiao, and Y. C. Hong, 2011a: Progress in impacts of aerosol on cloud properties and precipitation. Climatic and Environmental Research, 16, 525–542. (in Chinese)Google Scholar
  61. Yang, X. C., Y. L. Hou, and B. D. Chen, 2011b: Observed surface warming induced by urbanization in east China. J. Geophys. Res., 116, D14113, doi:  10.1029/2010jd015452.CrossRefGoogle Scholar
  62. Zhai, P. M., X. B. Zhang, H. Wan, and X. H. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 1096–1108, doi:  10.1175/jcli-3318.1. CrossRefGoogle Scholar
  63. Zhu, J., Y. C. Zhang, and D. Q. Huang, 2009: Analysis of changes in different-class precipitation over eastern China under global warming. Plateau Meteorology, 28, 889–896. (in Chinese)Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Run Liu
    • 1
  • Shaw Chen Liu
    • 2
    • 3
  • Ralph J. Cicerone
    • 4
    • 5
  • Chein-Jung Shiu
    • 2
  • Jun Li
    • 1
  • Jingli Wang
    • 6
  • Yuanhang Zhang
    • 1
  1. 1.State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and EngineeringPeking UniversityBeijingChina
  2. 2.Research Center for Environmental ChangesAcademia SinicaTaipeiTaiwan
  3. 3.Department of Atmospheric Science, NCUJhongliTaiwan
  4. 4.National Academy of SciencesWashington DCUSA
  5. 5.Earth System ScienceUniversity of CaliforniaIrvineUSA
  6. 6.Institute of Urban Meteorology of China Meteorological AdministrationBeijingChina

Personalised recommendations