Advances in Atmospheric Sciences

, Volume 33, Issue 2, pp 208–220 | Cite as

Evaluation of the tropical variability from the Beijing Climate Center’s real-time operational global Ocean Data Assimilation System

  • Wei Zhou
  • Mengyan Chen
  • Wei Zhuang
  • Fanghua Xu
  • Fei Zheng
  • Tongwen Wu
  • Xin Wang


The second-generation Global Ocean Data Assimilation System of the Beijing Climate Center (BCC GODAS2.0) has been run daily in a pre-operational mode. It spans the period 1990 to the present day. The goal of this paper is to introduce the main components and to evaluate BCC GODAS2.0 for the user community. BCC GODAS2.0 consists of an observational data preprocess, ocean data quality control system, a three-dimensional variational (3DVAR) data assimilation, and global ocean circulation model [Modular Ocean Model 4 (MOM4)]. MOM4 is driven by six-hourly fluxes from the National Centers for Environmental Prediction. Satellite altimetry data, SST, and in-situ temperature and salinity data are assimilated in real time. The monthly results from the BCC GODAS2.0 reanalysis are compared and assessed with observations for 1990–2011. The climatology of the mixed layer depth of BCC GODAS2.0 is generally in agreement with that ofWorld Ocean Atlas 2001. The modeled sea level variations in the tropical Pacific are consistent with observations from satellite altimetry on interannual to decadal time scales. Performances in predicting variations in the SST using BCC GODAS2.0 are evaluated. The standard deviation of the SST in BCC GODAS2.0 agrees well with observations in the tropical Pacific. BCC GODAS2.0 is able to capture the main features of El Ni˜no Modoki I and Modoki II, which have different impacts on rainfall in southern China. In addition, the relationships between the Indian Ocean and the two types of El Ni˜no Modoki are also reproduced.


operational oceanography global ocean 3DVAR El Ni˜no interannual variability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alves, O., D. Hudson, M. Balmaseda, and L. Shi, 2011: Seasonal and decadal prediction. Operational Oceanography in the 21st Century, A. Schiller and G. B. Brassington, Eds., Springer, Netherlands, 513–542.CrossRefGoogle Scholar
  2. Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Ni˜no Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi: 10.1029/2006JC003798.CrossRefGoogle Scholar
  3. Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 1132–1161.CrossRefGoogle Scholar
  4. Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126, 1013–1021.CrossRefGoogle Scholar
  5. Counillon, F., I. Bethke, N. Keenlyside, M. Bentsen, L. Bertino, and F. Zheng, 2014: Seasonal-to-decadal predictions with the ensemble Kalman filter and the Norwegian Earth System Model: A twin experiment. Tellus A, 66, 21074.CrossRefGoogle Scholar
  6. de Boyer Montégut., C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi: 10.1029/2004JC002378.CrossRefGoogle Scholar
  7. Dong, S. F., S. T. Gille, and J. Sprintall, 2007: An assessment of the Southern Ocean mixed layer heat budget. J. Climate, 20, 4425–4442, doi: 10.1175/JCLI4259.1.CrossRefGoogle Scholar
  8. Dong, S. F., S. L. Garzoli, and M. Baringer, 2009: An assessment of the seasonal mixed layer salinity budget in the Southern Ocean. J. Geophys. Res., 114, C12001, doi: 10.1029/2008JC005258.CrossRefGoogle Scholar
  9. D’Ortenzio, F., D. Iudicone, C. de Boyer Montegut, P. Testor, D. Antoine, S. Marullo, R. Santoleri, and G. Madec, 2005: Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles. Geophys. Res. Lett., 32, L12605, doi: 10.1029/2005GL022463.CrossRefGoogle Scholar
  10. Fu, W. W., J. Zhu, and C. X. Yan, 2009a: A comparison between 3DVAR and EnOI techniques for satellite altimetry data assimilation. Ocean Modelling, 26, 206–216.CrossRefGoogle Scholar
  11. Fu, W. W., J. Zhu, C. X. Yan, and H. L. Liu, 2009b: Toward a global ocean data assimilation system based on ensemble optimum interpolation: Altimetry data assimilation experiment. Ocean Dynamics, 59, 587–602.CrossRefGoogle Scholar
  12. Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2003: A technical guide to MOM4. NOAA/Geophysical Fluid Dynamics Laboratory, GFDL Ocean Group Tech. Rep. No. 5, 371 pp.Google Scholar
  13. Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Science, 1, 45–79.CrossRefGoogle Scholar
  14. Han, G. J., H. L. Fu, X. F. Zhang, W. Li, X. R. Wu, X. D. Wang, and L. X. Zhang, 2013: A global ocean reanalysis product in the China Ocean Reanalysis (CORA) project. Adv. Atmos. Sci., 30, 1621–1631, doi: 10.1007/s00376-013-2198-9.CrossRefGoogle Scholar
  15. Huang, B. Y., Y. Xue, and D. W. Behringer, 2008: Impacts of Argo salinity in NCEP Global Ocean Data Assimilation System: The tropical Indian Ocean. J. Geophys. Res., 113, C08002, doi: 10.1029/2007JC004388.Google Scholar
  16. Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear Phenomena, 230, 112–126.CrossRefGoogle Scholar
  17. Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Climate, 22, 615–632.CrossRefGoogle Scholar
  18. Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Ni˜no events: Cold tongue El Ni˜no and warm pool El Ni˜no. J. Climate, 22, 1499–1515.CrossRefGoogle Scholar
  19. Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Ni˜no autumn and winter. Geophys. Res. Lett., 32, L16705, doi: 10.1029/2005GL022860.CrossRefGoogle Scholar
  20. Levitus, S., 1982: Climatological atlas of the world ocean. NOAA/ERL GFDL Professional Paper 13, Princeton, N. J., 173 pp.Google Scholar
  21. Liu, Y. M., R. H. Zhang, Y. H. Yin, and T. Niu, 2005: The application of ARGO data to the global ocean data assimilation operational system of NCC. Acta Meteorologica Sinica, 19, 355–365.Google Scholar
  22. Merrifield, M. A., and M. E. Maltrud, 2011: Regional sea level trends due to a Pacific trade wind intensification. Geophys. Res. Lett., 38, L21605, doi: 10.1029/2011GL049576.CrossRefGoogle Scholar
  23. Merrifield, M. A., P. R. Thompson, and M. Lander, 2012: Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys. Res. Lett., 39, L13602, doi: 10.1029/2012GL052032.CrossRefGoogle Scholar
  24. Moore, J. K., K. Lindsay, S. C. Doney, M. C. Long, and K. Misumi, 2013: Marine ecosystem dynamics and biogeochemical cycling in the community earth system model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4. 5 and RCP8. 5 scenarios. J. Climate, 26, 9291–9312.CrossRefGoogle Scholar
  25. Nidheesh, A. G., M. Lengaigne, J. Vialard, A. S. Unnikrishnan, and H. Dayan, 2013: Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Climate Dyn., 41, 381–402, doi: 10.1007/s00382-012-1463-4.CrossRefGoogle Scholar
  26. Qiu, B., and S. M. Chen, 2012: Multidecadal sea level and gyre circulation variability in the Northwestern Tropical Pacific Ocean. J. Phys. Oceanogr., 42, 193–206.CrossRefGoogle Scholar
  27. Ratheesh, S., R. Sharma, and S. Basu, 2014: An EnOI assimilation of satellite data in an Indian Ocean circulation model. IEEE Transactions on Geoscience and Remote Sensing, 52, 4106–4111.CrossRefGoogle Scholar
  28. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.CrossRefGoogle Scholar
  29. Ren, L., K. Speer, and E. P. Chassignet, 2011: The mixed layer salinity budget and sea ice in the Southern Ocean. J. Geophys. Res., 116, C08031, doi: 10.1029/2010JC006634.Google Scholar
  30. Reynolds, R. W., and D. C. Marsico, 1993: An improved real-time global sea surface temperature analysis. J. Climate, 6, 114–119.CrossRefGoogle Scholar
  31. Reynolds, R. W., T. M. Smith, C. Y. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolutionblended analyses for sea surface temperature. J. Climate, 20, 5473–5496.CrossRefGoogle Scholar
  32. Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.Google Scholar
  33. Sakov, P., F. Counillon, L. Bertino, K. A. Lisæter, P. R. Oke, and A. Korablev, 2012: TOPAZ4: An ocean-sea ice data assimilation system for the North Atlantic and Arctic. Ocean Science Discussions, 9, 1519–1575.CrossRefGoogle Scholar
  34. Sallée, J. B., K. Speer, R. Morrow, and R. Lumpkin, 2008: An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the Southern Ocean. J. Mar. Res., 66(4), 441–463.CrossRefGoogle Scholar
  35. Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296.CrossRefGoogle Scholar
  36. Talley, L. D., 1993: Distribution and formation of North Pacific intermediate water. J. Phys. Oceanogr., 23, 517–537.CrossRefGoogle Scholar
  37. Wang, C. Z., and X. Wang, 2013: Classifying El Ni˜no Modoki I and II by different impacts on rainfall in Southern China and typhoon tracks. J. Climate, 26, 1322–1338.CrossRefGoogle Scholar
  38. Wang, D. X., Y. H. Qin, X. J. Xiao, Z. Q. Zhang, and X. Y. Wu, 2012a: El Ni˜no and El Ni˜no Modoki variability based on a new ocean reanalysis. Ocean Dynamics, 62, 1311–1322.CrossRefGoogle Scholar
  39. Wang, D. X., Y. H. Qin, X. J. Xiao, Z. Q. Zhang, and F. M. Wu, 2012b: Preliminary results of a new global ocean reanalysis. Chinese Science Bulletin, 57, 3509–3517.CrossRefGoogle Scholar
  40. Wang, X., D. Wang, and W. Zhou, 2009: Decadal variability of twentieth-century El Ni˜no and La Ni˜na occurrence from observations and IPCC AR4 coupled models. Geophysical research letters, 36, L11701.CrossRefGoogle Scholar
  41. Wang, X., and C. Z. Wang, 2014: Different impacts of various El Ni˜no events on the Indian Ocean Dipole. Climate Dyn., 42, 991–1005.CrossRefGoogle Scholar
  42. Wu, T.W., and Coauthors, 2013: Progress in developing the shortrange operational climate prediction system of China national climate center. Journal of Applied Meteorological Science, 24, 533–543. (in Chinese)Google Scholar
  43. Wu, T.W., and Coauthors, 2014: An overview of BCC climate system model development and application for climate change studies. Journal of Meteorological Research, 28, 34–56.Google Scholar
  44. Xiao, X. J., D. X. Wang, C. X. Yan, and J. Zhu, 2008: Evaluation of a 3dVAR system for the South China Sea. Progress in Natural Science, 18, 547–554.CrossRefGoogle Scholar
  45. Xue, Y., B. Y. Huang, Z.-Z. Hu, A. Kumar, C. H. Wen, D. Behringer, and S. Nadiga, 2011: An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Climate Dyn., 37, 2511–2539.CrossRefGoogle Scholar
  46. Yan, C. X., J. Zhu, R. F. Li, and G. Q. Zhou, 2004: Roles of vertical correlations of background error and T–S relations in estimation of temperature and salinity profiles from sea surface dynamic height. J. Geophys. Res., 109, C08010, doi: 10.1029/2003JC002224.Google Scholar
  47. Yu, J.-Y., and H.-Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J. Geophys. Res., 112, D13106, doi: 10.1029/2006JD007654.Google Scholar
  48. Zhang, Q., and Y.-H. Ding, 2001: Decadal climate change and ENSO cycle. Acta Meteorologica Sinica, 59, 157–172. (in Chinese)Google Scholar
  49. Zhang, Q., Y. Guan, and H.-J. Yang, 2008: ENSO amplitude change in observation and coupled models. Adv. Atmos. Sci., 25, 361–366, doi: 10.1007/s00376-008-0361-5.CrossRefGoogle Scholar
  50. Zhang, X. B., and J. A. Church, 2012: Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett., 39, L21701, doi: 10.1029/2012GL053240.Google Scholar
  51. Zheng, F., and J. Zhu, 2015: Roles of initial ocean surface and subsurface states on successfully predicting 2006–2007 El Ni˜no with an intermediate coupled model. Ocean Science, 11, 187–194, doi: 10.5194/os-11-187-2015.CrossRefGoogle Scholar
  52. Zheng, F., J. Zhu, H. Wang, and R.-H. Zhang, 2009: Ensemble hindcasts of ENSO events over the past 120 years using a large number of ensembles. Adv. Atmos. Sci., 26(2), 359–372, doi: 10.1007/s00376-009-0359-7.CrossRefGoogle Scholar
  53. Zhou, G. Q., W. W. Fu, J. Zhu, and H. J. Wang, 2004: The impact of location-dependent correlation scales in ocean data assimilation. Geophys. Res. Lett., 31, L21306, doi: 10.1029/2004GL020579.CrossRefGoogle Scholar
  54. Zhuang, W., B. Qiu, and Y. Du, 2013: Low-frequency western Pacific Ocean sea level and circulation changes due to the connectivity of the Philippine Archipelago. J. Geophys. Res., 118, 6759–6773.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Wei Zhou
    • 1
  • Mengyan Chen
    • 2
  • Wei Zhuang
    • 2
  • Fanghua Xu
    • 3
  • Fei Zheng
    • 4
  • Tongwen Wu
    • 1
  • Xin Wang
    • 2
  1. 1.Laboratory for Climate StudiesNational Climate Center, China Meteorological AdministrationBeijingChina
  2. 2.State Key Laboratory of Tropical OceanographySouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
  3. 3.Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System ScienceTsinghua UniversityBeijingChina
  4. 4.International Center for Climate and Environment ScienceInstitute of Atmospheric Physics, Chinese Academy of SciencesBeijingChina

Personalised recommendations