Advances in Atmospheric Sciences

, Volume 32, Issue 9, pp 1277–1290 | Cite as

Classification of precipitation types using fall velocity-diameter relationships from 2D-video distrometer measurements

  • Jeong-Eun Lee
  • Sung-Hwa Jung
  • Hong-Mok Park
  • Soohyun Kwon
  • Pay-Liam Lin
  • GyuWon LeeEmail author


Fall velocity-diameter relationships for four different snowflake types (dendrite, plate, needle, and graupel) were investigated in northeastern South Korea, and a new algorithm for classifying hydrometeors is proposed for distrometric measurements based on the new relationships. Falling ice crystals (approximately 40 000 particles) were measured with a two-dimensional video disdrometer (2DVD) during a winter experiment from 15 January to 9 April 2010. The fall velocity-diameter relationships were derived for the four types of snowflakes based on manual classification by experts using snow photos and 2DVD measurements: the coefficients (exponents) for different snowflake types were 0.82 (0.24) for dendrite, 0.74 (0.35) for plate, 1.03 (0.71) for needle, and 1.30 (0.94) for graupel, respectively. These new relationships established in the present study (PS) were compared with those from two previous studies. Hydrometeor types were classified with the derived fall velocity-diameter relationships, and the classification algorithm was evaluated using 3× 3 contingency tables for one rain-snow transition event and three snowfall events. The algorithm showed good performance for the transition event: the critical success indices (CSIs) were 0.89, 0.61 and 0.71 for snow, wet-snow and rain, respectively. For snow events, the algorithm performance for dendrite and plate (CSIs = 1.0 and 1.0, respectively) was better than for needle and graupel (CSIs = 0.67 and 0.50, respectively).

Key words

snowflake types wet snow fall velocity-diameter hydrometeor type classification 2DVD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amemoya, Y., 1997: Generalization of the TLS approach in the errors-in-variables problem. Proc. the Second International Workshop on Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modeling, S. Van Huffel, Ed., SISM, 77–86.Google Scholar
  2. Atlas, D., Srivastava, R. C. and Sekhon, R. S., 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11, 1–35.CrossRefGoogle Scholar
  3. Baker, B., and Coauthors, 2012: How well are we measuring snow? The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811–829.CrossRefGoogle Scholar
  4. Barthazy, E., and R. Schefold, 2006: Fall velocity of snowflakes of different riming degree and crystal types. Atmospheric Research, 82, 391–398.CrossRefGoogle Scholar
  5. Brandes, E. A., K. Ikeda, G. Thompson, and M. Schönhuber, 2008: Aggregate terminal velocity/temperature relations. J. Appl. Meteor. Climatol., 47, 2729–2736.CrossRefGoogle Scholar
  6. Fujiyoshi, Y., T. Endoh, T. Yamada, K. Tsuboki, Y. Tachibana, and G. Wakahama, 1990: Determination of a Z-R relationship for snowfall using a radar and high sensitivity snow gauges. J. Appl. Meteor., 29, 147–152.CrossRefGoogle Scholar
  7. Garrett, T. J., and S. E. Yuter, 2014: Observed influence of riming, temperature, and turbulence on the fallspeed of solid precipitation. Geophys. Res. Lett., 41, 6515–6522.CrossRefGoogle Scholar
  8. Grazioli, J., D. Tuia, S. Monhart, M. Schneebeli, T. Raupach, and A. Berne, 2014: Hydrometeor classification from twodimensional video disdrometer data. Atmos. Meas. Tech., 7, 2869–2882.CrossRefGoogle Scholar
  9. Hansch, M., 1999: Fall velocity and shape of snowflakes. Ph. D. thesis, Swiss Federal Institute of Technology, 117 pp.Google Scholar
  10. Huang, G.-J., V. N. Bringi, R. Cifelli, D. Hudak, and W. A. Petersen, 2010: A methodology to derive radar reflectivityliquid equivalent snow rate relations using C-Band radar and a 2D video disdrometer. J. Atmos. Oceanic Technol., 27, 637–651.CrossRefGoogle Scholar
  11. Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602–617.CrossRefGoogle Scholar
  12. Langleben, M. P., 1954: The terminal velocity of snowflakes. Quart. J. Roy. Meteor. Soc., 80, 174–181.CrossRefGoogle Scholar
  13. Lim, S., V. Chandrasekar, and V. N. Bringi, 2005: Hydrometeor classification system using dual-polarization radar measurements: Model improvements and in situ verification. IEEE Trans. Geosci. Remote Sens., 43, 792–801.CrossRefGoogle Scholar
  14. Liu, H. P., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140–164.CrossRefGoogle Scholar
  15. Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 2185–2197.CrossRefGoogle Scholar
  16. Matrosov, S. Y., 1992: Radar reflectivity in snowfall. IEEE Trans. Geosci. Remote Sens., 30, 454–461.CrossRefGoogle Scholar
  17. Matrosov, S. Y., 1998: A dual-wavelength radar method to measure snowfall rate. J. Appl. Meteor., 37, 1510–1521.CrossRefGoogle Scholar
  18. Moisseev, D., E. Saltikoff, and M. Leskinen, 2009: Dualpolarization weather radar observations of snow growth processes. 34th Conference on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 13B. 2.Google Scholar
  19. Nitu, R., 2013: Cold as SPICE. Meteorological Technology International, 148–150.Google Scholar
  20. Park, H. S., A. V. Ryzhkov, D. S. Zrnić and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730–748.CrossRefGoogle Scholar
  21. Rasmussen, R., M. Dixon, S. Vasiloff, F. Hage, S. Knight, J. Vivekanandan, and M. Xu, 2003: Snow nowcasting using a real-time correlation of radar reflectivity with snow gauge accumulation. J. Appl. Meteor., 42, 20–36.CrossRefGoogle Scholar
  22. Roebber, P. J., S. L. Bruening, D. M. Schultz, and J. V. Cortinas Jr., 2003: Improving snowfall forecasting by diagnosing snow density. Wea. Forecasting, 18, 264–287.CrossRefGoogle Scholar
  23. Schonhuber, M., Lammer, G., and Randeu, W. L., 2008: The 2DVideo-Distrometer. Precipitation: Advances in Measurement, Estimation, and Prediction, S. Michaelides, Ed. Springer, 3–31.CrossRefGoogle Scholar
  24. Sheppard, B. E., and P. I. Joe, 2000: Automated precipitation detection and typing in winter: A two-year study. J. Atmos. Oceanic Technol., 17, 1493–1507.CrossRefGoogle Scholar
  25. Thurai, M., D. Hudak, V. N. Bringi, G. W. Lee, and B. Sheppard, 2007: Cold rain event analysis using 2-D video disdrometer, C-band polarimetric radar, X-band vertically-pointing radar and POSS. Preprints, 33rd Conf. on Radar Meteorology, Cairns, Australia, Amer.Meteor. Soc., P10. 5. [Available online at]Google Scholar
  26. Vivekanandan, J., S. Ellis, D. Oye, D. S. Zrnic, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using Sband dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381–388.CrossRefGoogle Scholar
  27. Wilks, D., 2006: Statistical methods in the atmospheric sciences, 2nd ed., Academic, Burlington, Mass, 627 pp.Google Scholar
  28. Yuter, S. E., D. E. Kingsmill, L. B. Nance, and M. Loffler-Mang, 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol., 45, 1450–1464.CrossRefGoogle Scholar
  29. Zawadzki, I., E. Jung, and G. Lee, 2010: Snow Studies. Part I: A study of natural variability of snow terminal velocity. J. Atmos. Sci., 67, 1591–1604.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jeong-Eun Lee
    • 1
  • Sung-Hwa Jung
    • 1
    • 2
  • Hong-Mok Park
    • 2
  • Soohyun Kwon
    • 1
  • Pay-Liam Lin
    • 3
  • GyuWon Lee
    • 1
    • 2
    Email author
  1. 1.Department of Astronomy and Atmospheric Sciences, Research and Training Team for Future Creative Astrophysicists and CosmologistsKyungpook National UniversityKyungpookKorea
  2. 2.Center for Atmospheric Remote SensingKyungpook National UniversityKyungpookKorea
  3. 3.Departmentof Atmospheric SciencesNCUTaipeiTaiwan

Personalised recommendations