Advertisement

Advances in Atmospheric Sciences

, Volume 32, Issue 12, pp 1639–1646 | Cite as

Impact of UV-A radiation on erythemal UV and UV-index estimation over Korea

  • Sang Seo Park
  • Yun Gon LeeEmail author
  • Jung Hyun Kim
Article

Abstract

Because total UV (TUV) in the UV-A region is 100 times higher than in the UV-B region, UV-A is a considerable component when calculating erythemal UV (EUV) and UV-index. The ratio of EUV to TUV in the UV-A value [EUV(A)/TUV(A)] is investigated to convert the EUV(A) from TUV(A) for broadband observation. The representative value of EUV(A)/TUV(A), from the simulation study, is 6.9×10−4, changing from 6.1×10−4 to 7.0×10−4 as aerosol optical depth, total ozone and solar zenith angle change. By adopting the observational data of EUV(B) and TUV(A) from UV-biometer measurements at Yonsei University [(37.57°N, 126.95°E), 84 m above sea level], the EUV irradiance increases to 15% of EUV(B) due to the consideration of EUV(A) from the data of TUV(A) observation. Compared to the total EUV observed from the Brewer spectrophotometer at the same site, the EUV(B) from the UV-biometer observes only 95% of total EUV, and its underestimation is caused by neglecting the effect of UV-A. However, the sum of EUV(B) and EUV(A) [EUV(A+B)] from two UV-biometers is 10% larger than the EUV from the Brewer spectrophotometer because of the spectral overlap effect in the range 320–340 nm. The correction factor for the overlap effect adjusts 8% of total EUV.

Keywords

erythemal UV total UV UV-B UV-biometer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caldwell, M.M., L. O. Björn, J. F. Bornman, S. D. Flint, G. Kulandaivelu, A. H. Teramura, and M. Tevini, 1998: Effects of increased solar ultraviolet radiation on terrestrial ecosystems. Journal of Photochemistry and Photobiology B: Biology, 46, 40–52.CrossRefGoogle Scholar
  2. Cho, H.K, B. Y. Lee, J. Lee, and S. Park, 2001: A seasonal climatology of erythemal ultraviolet irradiance over Korea. Asia- ac. J. Atmos. Sci., 37, 525–539.Google Scholar
  3. Griggs, M., 1968: Absorption coefficients of ozone in the ultraviolet and visible regions. The Journal of Chemical Physics, 49, 857–859.CrossRefGoogle Scholar
  4. Inn, E. C. Y., and Y. Tanaka, 1953: Absorption coefficient of ozone in the ultraviolet and visible regions. Journal of the Optical Society of America, 43, 870–872.CrossRefGoogle Scholar
  5. Kim, J., S. S. Park, N. Cho, W. Kim, and H.- K. Cho, 2011: Recent variations of UVirradiance at Seoul 2004 ~ 2010, Atmosphere, 21, 429–438.Google Scholar
  6. Kim, S.-W., S.-C. Yoon, J. Kim, and S.-Y. Kim, 2007: Seasonal and monthly variations of columnar aerosol optical properties over East Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements. Atmos. Environ., 41, 1634–1651.CrossRefGoogle Scholar
  7. Koo, J.-H., 2008: Optical properties of aerosol in a megacity, Seoul from ground-based and satellite measurements. M.S. thesis, Yonsei University, 145 pp.Google Scholar
  8. Koo, J.-H, J. Kim, M. Kim, H.-K. Cho, K. Aoki, and M. Yamano, 2007: Analysis of Aerosol Optical Properties in Seoul using Skyradiometer observation. Atmosphere, 17, 407–420.Google Scholar
  9. Kudish, A.I., V. Lyubansky, E. G. Evseev, and A. Ianetz, 2005: Inter-comparison of the solar UVB, UVA and global radiation clearness and UVindices for Beer Sheva and Neve Zohar (Dead Sea), Israel. Energy, 30, 1623–1641.CrossRefGoogle Scholar
  10. Le Quéré, F., and C. Leforestier, 1992: Theoretical calculation of the Huggins band of ozone. Chem. Phys. Lett., 189, 537–541.CrossRefGoogle Scholar
  11. Madronich, S., R. L. McKenzie, L. O. Björn, and M. M. Caldwell, 1998: Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Journal of Photochemistry and Photobiology B: Biology, 46, 5–19.CrossRefGoogle Scholar
  12. Mayer, B. and A. Kylling, 2005: Technical note: The libRadtran software package for radiative transfer calculations- Description and examples of use. Atmos. Chem. Phys, 5, 1855–1877.CrossRefGoogle Scholar
  13. McKinlay, A.F., and B. L. Diffey, 1987: A reference action spectrum for UVinduced erythema in human skin. Human Exposure to Ultraviolet Radiation: Risks and Regulations, W. F. Passchier and B. F. M. Bosnajakovic, Eds., Elsevier, 83–87.Google Scholar
  14. Molina, L.T., and M. J. Molina, 1986: Absolute absorption cross sections of ozone in the 185-to 350-nm wavelength range. J. Geophys. Res., 91(D13), 14501–14508.CrossRefGoogle Scholar
  15. Park, S.S., J. Kim, N. Cho, Y. G. Lee, and H. K. Cho, 2011: The variations of stratospheric ozone over the Korean Peninsula 1985–2009. Atmosphere, 21, 349–359.Google Scholar
  16. Setlow, R.B., 1974: The wavelengths in sunlight effective in producing skin cancer: A theoretical analysis. Proceedings of the National Academy of Sciences of the United States of America, 71, 3363–3366.CrossRefGoogle Scholar
  17. Singh, R., S. Nath, R. S. Tanwar, and S. Singh, 2005: Study of erythemal dose variation and exposure time for different UV-B dose levels at Indian mainland and Antarctica. Proc. URSI, New Delhi, [Available Online at http://www.ursi.org/Proceedings/ProcGA05/pdf/K04a.9(01460).pdf]Google Scholar
  18. Smith, R.C., Z. M. Wan, and K. S. Baker, 1992: Ozone depletion in Antarctica: Modeling its effect on solar UV irradiance under clear-sky conditions. J. Geophys. Res., 97(C5), 7383–7397.CrossRefGoogle Scholar
  19. Solar Light Co., 1991: UV-Biometer User’s Manual. Solar Light Co., 459 pp.Google Scholar
  20. Solar Light Co., 2006: 501 UV Biometer Owners Manual. Solar Light Co., 48 pp.Google Scholar
  21. van Geffen, J., R. van der A, M. van Weele, M. Allart, and H. Eskes, 2004: Surface UV radiation monitoring based on GOME and SCIAMACHY. Proc. of the 2004 Envisat & ERS Symposium, Salzburg, Austria.Google Scholar
  22. World Health Organization, 2002: Global Solar UVindex. A Practical Guide. World Health Organization, WHO/SDE/OEH/02.2, Geneva, Switcherland, 28 pp.Google Scholar
  23. World Meteorological Organization, 2011: GAW Report No. 198-Data Quality Objectives (DQO) for Solar Ultraviolet Radiation Measurements (Part 1), World Meteorological Organization, 21 pp.Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Atmospheric SciencesYonsei UniversitySeoulKorea
  2. 2.Department of Atmospheric SciencesChungnam National UniversityDaejeonKorea

Personalised recommendations