Advances in Atmospheric Sciences

, Volume 32, Issue 8, pp 1129–1142 | Cite as

Simulation of the equatorially asymmetric mode of the Hadley circulation in CMIP5 models

  • Juan Feng
  • Jianping Li
  • Jianlei Zhu
  • Fei Li
  • Cheng Sun
Article

Abstract

The tropical Hadley circulation (HC) plays an important role in influencing the climate in the tropics and extra-tropics. The realism of the climatological characteristics, spatial structure, and temporal evolution of the long-term variation of the principal mode of the annual mean HC (i.e., the equatorially asymmetric mode, EAM) was examined in model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The results showed that all the models are moderately successful in capturing the HC’s climatological features, including the spatial pattern, meridional extent, and intensity, but not the spatial or temporal variation of the EAM. The possible reasons for the poor simulation of the long-term variability of the EAM were explored. None of the models can successfully capture the differences in the warming rate between the tropical Southern Hemisphere (SH) and Northern Hemisphere (NH), which is considered to be an important driver for the variation of the AM. Most of the models produce a faster warming in the NH than in the SH, which is the reverse of the observed trend. This leads to a reversed trend in the meridional gradient between the SH and NH, and contributes to the poor simulation of EAM variability. Thus, this aspect of the models should be improved to provide better simulations of the variability of the HC. This study suggests a possible reason for the poor simulation of the HC, which may be helpful for improving the skill of the CMIP5 models in the future.

Key words

tropical Hadley circulatio equatorially asymmetric mode CMIP5 sea surface temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao, Q., and Coauthors, 2013: The flexible global oceanatmosphere-land system model, version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561–576, doi: 10.1007/s00376-012-2113-9.CrossRefGoogle Scholar
  2. Bentsen, M., and Coauthors, 2012: The Norwegian earth system model, NorESM1-M—part 1: Description and basic evaluation. Geosci. Model Dev. Discuss., 5, 2843–2931.CrossRefGoogle Scholar
  3. Chylek, P. J., J. Li, M. K. Dubey, M. Wang, and G. Lesins, 2011: Observed and model simulated 20th century Arctic temperature variability: Canadian Earth system model CanESM2. Atmos. Chem. Phys. Diss., 11, 22893–22907.CrossRefGoogle Scholar
  4. Chang, E. K. M., 1995: The influence of Hadley circulation intensity changes on extratropical climate in an idealized model. J. Atmos. Sci., 52, 2006–2024.CrossRefGoogle Scholar
  5. Chen, J. Y., B. E. Carlson, and A. D. Del Genio, 2002: Evidence for strengthening of the tropical general circulation in the 1990s. Science, 295, 838–841.CrossRefGoogle Scholar
  6. Diaz, H. F., and R. Bradley, 2004: The Hadley Circulation: Present, Past and Future. Kluwer Academic Publishers, The Netherlands, 511 pp.CrossRefGoogle Scholar
  7. Dima, I. M., and J. M. Wallace, 2003: On the seasonality of the Hadley cell. J. Atmos. Sci., 60, 1522–1527.CrossRefGoogle Scholar
  8. Feng, J., and J. P. Li, 2013: Contrasting impacts of two types of ENSO on the boreal spring Hadley circulation. J. Climate, 26, 4773–4789.CrossRefGoogle Scholar
  9. Feng, R., J. P. Li, and J. C. Wang, 2011: Regime change of the boreal summer Hadley circulation and its connection with the tropical SST. J. Climate, 24, 3867–3877.CrossRefGoogle Scholar
  10. Feng, J., J. P. Li, and F. Xie, 2013: Long-term variation of the principal mode of boreal spring Hadley circulation linked to SST over the Indo-Pacific warm pool. J. Climate, 26, 532–544.CrossRefGoogle Scholar
  11. Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312, 1179.CrossRefGoogle Scholar
  12. Frierson, D. M.W., J. Lu, and G. Chen, 2007: Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34(18), L18804, doi: 10.1029/2007GL031115.CrossRefGoogle Scholar
  13. Guo, Y., W. J. Dong, F. M. Ren, Z. C. Zhao, and J. B. Huang, 2013: Assessment of CMIP5 simulations for China annual average surface temperature and its comparison with CMIP3 simulations. Progressus Inquisitiones De Mutatione Climatis, 9(3), 181–186. (in Chinese)Google Scholar
  14. Hou, A. Y., 1998: Hadley circulation as a modulator of the extratropical climate. J. Atmos. Sci., 55, 2437–2457.CrossRefGoogle Scholar
  15. Hou, A. Y., and R. S. Lindzen, 1992: The influence of concentrated heating on the Hadley circulation. J. Atmos. Sci., 49(14), 1233–1241.CrossRefGoogle Scholar
  16. Hu, Y. Y., and C. Zhou, 2009: Decadal changes in the Hadley circulation. Adv. Geosci., J. H. Oh, Ed.,World Scientific Publishing Company, Singapore, 250 pp.Google Scholar
  17. Hu, Y. Y., C. Zhou, and J. P. Liu, 2011: Observational evidence for poleward expansion of the Hadley circulation. Adv. Atmos. Sci., 28(1), 33–44.CrossRefGoogle Scholar
  18. Hu, Y. Y., L. J. Tao, and J. P. Liu, 2013: Poleward expansion of the Hadley circulation in CMIP5 simulations. Adv. Atmos. Sci., 30(3), 790–795.CrossRefGoogle Scholar
  19. Hudson, R. D., M. F. Andrade, M. B. Follette, and A. D. Frolov, 2006: The total ozone field separated into meteorological regimes-part II: Northern Hemisphere mid-latitude total ozone trends. Atmos. Chem. Phys., 6, 5183–5191.CrossRefGoogle Scholar
  20. Johanson, C. M., and Q. Fu, 2009: Hadley cell widening: Model simulations versus observations. J. Climate, 22, 2713–2725.CrossRefGoogle Scholar
  21. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472.CrossRefGoogle Scholar
  22. Li, J. P., 2001: Atlas of Climate of Global Atmospheric Circulation I. Climatological Mean State. China Meteorological Press, Beijing, 279 pp. (in Chinese)Google Scholar
  23. Li, J. P., and J. Feng, 2015: Tropical large-scale atmosphere-ocean interaction in association with subtropical aridity trend. On Aridity Trend in Northern China. C. B. Fu., Ed., World Scientific. (in press)Google Scholar
  24. Lindzen, R. S., 1994: Climate dynamics and global change. Annual Review of Fluid Mechanics, 26, 353–378.CrossRefGoogle Scholar
  25. Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–2436.CrossRefGoogle Scholar
  26. Lu, J., G. A. Vecchi, and T. eichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi: 10.1029/2006GL028443.CrossRefGoogle Scholar
  27. Jiang, Y., Y. Luo, and Z. C. Zhao, 2010: Projection of wind speed changes in China in the 21st century by climate models. Chinese J. Atmos. Sci., 34, 323–336.Google Scholar
  28. Ma, J., and J. P. Li, 2008: The principal modes of variability of the boreal winter Hadley cell. Geophys. Res. Lett., 35, L01808, doi: 10.1029/2007GL031883.CrossRefGoogle Scholar
  29. Nguyen, H., A. Evans, C. Lucas, I. Smith, and B. Timbal, 2013: The Hadley circulation in reanalyses: Climatology, variability, and change. J. Climate, 26, 3357–3376.CrossRefGoogle Scholar
  30. Qiao, F. L., Z. Y. Song, Y. Bao, Y. J. Song, S. Qi, C. J. Huang, and W. Zhao, 2013: Development and evaluation of an earth system model with surface gravity waves. J. Geophys. Res., 118, 4514–4524.CrossRefGoogle Scholar
  31. Quan, X. W., H. F. Diaz, and M. P. Hoerling, 2004: Change in the tropical Hadley cell since 1950. The Hadley Circulation: Present, Past and Future, H. F. Diaz and R. S. Bradley, Eds., Springer, 85–120.CrossRefGoogle Scholar
  32. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplanand, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 104(D14), 4407, doi: 10.1029/2002JD002670.CrossRefGoogle Scholar
  33. Seidel, D. J., Q. Fu,W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nature Geoscience, 1, 21–24.Google Scholar
  34. Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 2466–2477.CrossRefGoogle Scholar
  35. Stachnik, J. P., and C. Schumacher, 2011: A comparison of the Hadley circulation in modern reanalyses. J. Geophys. Res., 116, D22102, doi: 10.1029/2011JD016677.Google Scholar
  36. Stevens, B., and Coauthors, 2013: The atmospheric component of the MPI-M Earth system model: ECHAM6. J. Adv. Model Earth Syst., 5, 146–172.CrossRefGoogle Scholar
  37. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.CrossRefGoogle Scholar
  38. Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012.CrossRefGoogle Scholar
  39. Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 2091–2121.CrossRefGoogle Scholar
  40. Volodin, E. M., N. A. Dianskii, A. V. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Atmos. Ocean. Phy., 46(4), 414–431.CrossRefGoogle Scholar
  41. Wielicki, B. A., and Coauthors, 2002: Evidence for large decadal variability in the tropical mean radiative energy budget. Science, 295, 841–844.CrossRefGoogle Scholar
  42. Zheng, F., J. P. Li, R. T. Clark, and H. C. Nnamchi, 2013: Simulation and projection of the Southern Hemisphere Annular Mode in CMIP5 models. J. Climate, 26, 9860–9879.CrossRefGoogle Scholar
  43. Zhu, X., W. J. Dong, and Y. Guo, 2013: Comparison of simulated winter and spring Arctic oscillation variability by CMIP5 and CMIP3 coupled models. Progressus Inquisitiones De Mutatione Climatis, 9(3), 165–172. (in Chinese)Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Juan Feng
    • 1
    • 2
    • 3
  • Jianping Li
    • 1
    • 3
  • Jianlei Zhu
    • 2
  • Fei Li
    • 4
  • Cheng Sun
    • 1
    • 3
  1. 1.College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid DynamicsInstitute of Atmospheric Physics, Chinese Academy of SciencesBeijingChina
  3. 3.Joint Center for Global Change StudiesBeijingChina
  4. 4.Department of Lower Atmosphere Observation ResearchInstitute of Atmospheric Physics, Chinese Academy of SciencesBeijingChina

Personalised recommendations