Advances in Atmospheric Sciences

, Volume 32, Issue 11, pp 1460–1472 | Cite as

An ocean data assimilation system in the Indian Ocean and west Pacific Ocean

Article

Abstract

The development and application of a regional ocean data assimilation system are among the aims of the Global Ocean Data Assimilation Experiment. The ocean data assimilation system in the regions including the Indian and West Pacific oceans is an endeavor motivated by this goal. In this study, we describe the system in detail. Moreover, the reanalysis in the joint area of Asia, the Indian Ocean, and the western Pacific Ocean (hereafter AIPOcean) constructed using multi-year model integration with data assimilation is used to test the performance of this system. The ocean model is an eddy-resolving, hybrid coordinate ocean model. Various types of observations including in-situ temperature and salinity profiles (mechanical bathythermograph, expendable bathythermograph, Array for Real-time Geostrophic Oceanography, Tropical Atmosphere Ocean Array, conductivity–temperature–depth, station data), remotely-sensed sea surface temperature, and altimetry sea level anomalies, are assimilated into the reanalysis via the ensemble optimal interpolation method. An ensemble of model states sampled from a long-term integration is allowed to change with season, rather than remaining stationary. The estimated background error covariance matrix may reasonably reflect the seasonality and anisotropy. We evaluate the performance of AIPOcean during the period 1993–2006 by comparisons with independent observations, and some reanalysis products. We show that AIPOcean reduces the errors of subsurface temperature and salinity, and reproduces mesoscale eddies. In contrast to ECCO and SODA products, AIPOcean captures the interannual variability and linear trend of sea level anomalies very well. AIPOcean also shows a good consistency with tide gauges.

Keywords

ocean data assimilation reanalysis ensemble optimal interpolation background error covariance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks, H. T., 2000: Indonesian Throughflow in a coupled climate model and the sensitivity of the heat budget and deep overturning. J. Geophys. Res., 105(C11), 26135–26150.CrossRefGoogle Scholar
  2. Bentsen, M., G. Evensen, H. Drange, and A. D. Jenkins, 1999: Coordinate transform on a sphere using conformal mapping. Mon. Wea. Rev., 127, 2733–2740.CrossRefGoogle Scholar
  3. Bertino, L., and K. A. Lisæter, 2008: The TOPAZ monitoring and prediction system for the Atlantic and Arctic Oceans, J. Operat. Oceanogr., 2, 15–18.Google Scholar
  4. Bleck, R., C. Rooth, D. M. Hu, and L. T. Smith, 1992: Salinitydriven thermocline transients in a wind-and thermohalineforced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr., 22, 1486–1505.CrossRefGoogle Scholar
  5. Carton, J. A., G. Chepurin, and X. H. Cao, 2000: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part II: Results. J. Phys. Oceanogr., 30(2), 311–326.Google Scholar
  6. Cummings, J. A., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 3583–3604.CrossRefGoogle Scholar
  7. Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/ Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19477–19498.CrossRefGoogle Scholar
  8. Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605.CrossRefGoogle Scholar
  9. Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665–669.CrossRefGoogle Scholar
  10. Evensen, G., 2003: The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dynamics, 53, 343–367.CrossRefGoogle Scholar
  11. Fu, W. W., J. Zhu, and C. X. Yan, 2009a: A comparison between 3DVAR and EnOI techniques for satellite altimetry data assimilation. Ocean Modelling, 26(3–4), 206–216.CrossRefGoogle Scholar
  12. Fu, W. W., J. Zhu, C. X. Yan, and H. L. Liu, 2009b: Toward a global ocean data assimilation system based on ensemble optimum interpolation: Altimetry data assimilation experiment. Ocean Dynamics, 59, 587–602, doi: 10.1007/s10236-009-0206-5.CrossRefGoogle Scholar
  13. Fujii, Y., and M. Kamachi, 2003: Three-dimensional analysis of temperature and salinity in the equatorial Pacific using a variational method with vertical coupled temperature-salinity empirical orthogonal function modes. J. Geophys. Res., 108(C9), 3297, doi: 10.1029/2002JC001745.CrossRefGoogle Scholar
  14. Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723–757.CrossRefGoogle Scholar
  15. Godfrey, J. S., and A. J. Weaver, 1991: Is the Leeuwin Current driven by Pacific heating and winds? Progress in Oceanography, 27, 225–272.CrossRefGoogle Scholar
  16. Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91, 5037–5046.CrossRefGoogle Scholar
  17. Gordon, A. L., and Coauthors, 2009: The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. Dyn. Atmos. Oceans, 50(2), 115–128.CrossRefGoogle Scholar
  18. Han, G. J., and Coauthors, 2011: A regional ocean reanalysis system for coastal waters of China and adjacent seas. Adv. Atmos. Sci., 28(3), 682–690, doi: 10.1007/s00376-010-9184-2.CrossRefGoogle Scholar
  19. Han, G. J., H. L. Fu, X. F. Zhang, W. Li, X. R. Wu, X. D. Wang, and L. X. Zhang, 2013: A global ocean reanalysis product in the China Ocean Reanalysis (CORA) project. Adv. Atmos. Sci., 30(6), 1621–1631, doi: 10.1007/s00376-013-2198-9.CrossRefGoogle Scholar
  20. Hirst, A. C., and J. S. Godfrey, 1993: The role of the Indonesian throughflow in a global ocean GCM. J. Phys. Oceanogr., 23, 1057–1086.CrossRefGoogle Scholar
  21. Jaimes, B., and L. K. Shay, 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 4188–4207, doi: 10.1175/2009MWR2849.1.CrossRefGoogle Scholar
  22. Lee, T., I. Fukumori, D. Menemenlis, Z. F. Xing, and L.-L. Fu, 2002: Effects of the Indonesian throughflow on the Pacific and Indian Oceans. J. Phys. Oceanogr., 32(5), 1404–1429.CrossRefGoogle Scholar
  23. Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111–127.CrossRefGoogle Scholar
  24. Le Traon, P. Y., F. Nadal, and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. Journal of Atmospheric and Oceanic Technology, 15, 522–534.CrossRefGoogle Scholar
  25. Li, X. C., J. Zhu, Y. G. Xiao, and R. W. Wang, 2010: A modelbased observation-thinning scheme for the assimilation of high-resolution SST in the shelf and coastal seas around China. Journal of Atmospheric and Oceanic Technology, 27, 1044–1058.CrossRefGoogle Scholar
  26. Lin, I.-I., C.-C. Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu, and I.- F. Pun, 2005: The interaction of supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133(9), 2635–2649.CrossRefGoogle Scholar
  27. Lin, I.-I., C.-H. Chen, I.-F. Pun, W. T. Liu, and C.-C. Wu, 2009: Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817, doi: 10.1029/2008GL035815.Google Scholar
  28. Martin, M. J., A. Hines, and M. J. Bell, 2007: Data assimilation in the FOAM operational short-range ocean forecasting system: A description of the scheme and its impact. Quart. J. Roy. Meteor. Soc., 133, 981–995.CrossRefGoogle Scholar
  29. McPhaden, M. J., and Coauthors, 1998: The tropical ocean-global atmosphere observing system: A decade of progress. J. Geophys. Res., 103(C7), 14169–14240.CrossRefGoogle Scholar
  30. McPhaden, M. J., and Coauthors, 2009: RAMA: The research moored array for African-Asian-Australian monsoon analysis and prediction. Bull. Amer. Meteor. Soc., 90, 459–480.CrossRefGoogle Scholar
  31. Oke, P. R., G. B. Brassington, D. A. Griffin, and A. Schiller, 2008: The Bluelink Ocean Data Assimilation System (BODAS). Ocean Modelling, 21, 46–70, doi: 10.1016/j.ocemod.2007.11.002.CrossRefGoogle Scholar
  32. Pandey, V. K., V. Bhatt, A. C. Pandey, and I. M. L. Das, 2007: Impact of Indonesian throughflow blockage on the southern Indian ocean. Current Science, 93, 399–406.Google Scholar
  33. Reynolds, R. W., T. M. Smith, C. Y. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolutionblended analyses for sea surface temperature. J. Climate, 20, 5473–5496.CrossRefGoogle Scholar
  34. Salonen, K., H. Jarvinen, G. Haase, S. Niemela, and R. Eresmaa, 2009: Doppler radar radial winds in HIRLAM. Part II: Optimizing the super-observation processing. Tellus A, 61, 288–295.CrossRefGoogle Scholar
  35. Schneider, N., 1998: The Indonesian throughflow and the global climate system. J. Climate, 11, 676–689.CrossRefGoogle Scholar
  36. Schneider, N., and T. P. Barnett, 1997: Indonesian throughflow in a coupled general circulation model. J. Geophys. Res., 102, 12341–12358.CrossRefGoogle Scholar
  37. Seko, H., T. Kawabata, T. Tsuyuki, H. Nakamura, K. Koizumi, and T. Iwabuchi, 2004: Impacts of GPS-derived water vapor and radial wind measured by Doppler radar on numerical prediction of precipitation. J. Meteor. Soc. Japan, 82, 473–489.CrossRefGoogle Scholar
  38. Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 1366–1383.CrossRefGoogle Scholar
  39. Teague, W. J., M. J. Carron, and P. J. Hogan, 1990: A comparison between the generalized digital environmental model and Levitus climatologies. J. Geophys. Res., 95, 7167–7183.CrossRefGoogle Scholar
  40. Wajsowicz, R., 2002: Air-sea interaction over the Indian Ocean due to variations in the Indonesian throughflow. Climate Dyn., 18, 437–453.CrossRefGoogle Scholar
  41. Wajsowicz, R. C., and E. K. Schneider, 2001: The Indonesian throughflow’s effect on global climate determined from the COLA coupled climate system. J. Climate, 14, 3029–3042.CrossRefGoogle Scholar
  42. Wajsowicz, R. C., and P. S. Schopf, 2001: Oceanic influences on the seasonal cycle in evaporation rate over the Indian Ocean. J. Climate, 14, 1199–1226.CrossRefGoogle Scholar
  43. Walker, N. D., R. R. Leben, and S. Balasubramanian, 2005: Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett., 32, L18610, doi: 10.1029/2005GL023716.Google Scholar
  44. Walker, N. D., and Coauthors, 2014: Slow translation speed causes rapid collapse of northeast Pacific Hurricane Kenneth over cold core eddy. Geophys. Res. Lett., 41(21), 7595–7601, doi: 10.1002/2014GL061584.CrossRefGoogle Scholar
  45. Wang, D. X., Y. H. Qin, X. J. Xiao, Z. Q. Zhang, and F. M. Wu, 2012: Preliminary results of a new global ocean reanalysis. Chinese Science Bulletin, 57(26), 3509–3517, doi: 10.1007/s11434-012-5232-x.CrossRefGoogle Scholar
  46. Wang, L., and T.-J. Zhou, 2012: Assessing the quality of regional ocean reanalysis data from ENSO signals. Atmos. Oceanic Sci. Lett., 5, 55–61.CrossRefGoogle Scholar
  47. Wijffels, S. E., J. Willis, C. M. Domingues, P. Barker, N. J. White, A. Gronell, K. Ridgway, and J. A. Church, 2008: Changing expendable bathythermograph fall rates and their impact on estimates of Thermosteric sea levelrise. J. Climate, 21, 5657–5672, doi: 10.1175/2008JCLI2290.1CrossRefGoogle Scholar
  48. Willis, J. K., J. M. Lyman, G. C. Johnson, et al., 2009: In situ data biases and recent ocean heat content variability. J. Atmos. Oceanic Technol., 26(4), 846–852.CrossRefGoogle Scholar
  49. Wu, C.-C., C.-Y. Lee, and I.-I. Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 3562–3578.CrossRefGoogle Scholar
  50. Xiao, X. J., D. X. Wang, C. X. Yan, and J. Zhu, 2008: Evaluation of a 3dVAR system for the South China Sea. Progress in Natural Science, 18, 547–554.CrossRefGoogle Scholar
  51. Xie, J. P., and J. Zhu, 2010: Ensemble optimal interpolation schemes for assimilating Argo profiles into a hybrid coordinate ocean model. Ocean Modelling, 33, 283–298.CrossRefGoogle Scholar
  52. Yan, C.-X., and J. Zhu, 2010: The impact of “bad” Argo profiles on an ocean data assimilation. Atmos. Oceanic Sci. Lett., 3(2), 59–63.CrossRefGoogle Scholar
  53. Zheng, Z.-W., C.-R. Ho, and N.-J. Kuo, 2008: Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang. Geophys. Res. Lett., 35, L20603, doi: 10.1029/2008GL035524.CrossRefGoogle Scholar
  54. Zheng, Z.-W., C.-R. Ho, Q. N. Zheng, Y.-T. Lo, N.-J. Kuo, and G. Gopalakrishnan, 2010: Effects of preexisting cyclonic eddies on upper ocean response to Category 5 typhoons in the western North Pacific. J. Geophys. Res., 115, C09013, doi: 10.1029/2009JC005562.Google Scholar
  55. Zu, T. T., D. X. Wang, C. X. Yan, I. Belkin, W. Zhuang, and J. Chen, 2013: Evolution of an anticyclonic eddy southwest of Taiwan. Ocean Dynamics, 63, 519–531.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.International Center for Climate and Environment Sciences, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations