Advances in Atmospheric Sciences

, Volume 32, Issue 5, pp 585–600 | Cite as

Major modes of short-term climate variability in the newly developed NUIST Earth System Model (NESM)

  • Jian Cao
  • Bin Wang
  • Baoqiang Xiang
  • Juan Li
  • Tianjie Wu
  • Xiouhua Fu
  • Liguang Wu
  • Jinzhong Min
Open Access
Article

Abstract

A coupled earth system model (ESM) has been developed at the Nanjing University of Information Science and Technology (NUIST) by using version 5.3 of the European Centre Hamburg Model (ECHAM), version 3.4 of the Nucleus for European Modelling of the Ocean (NEMO), and version 4.1 of the Los Alamos sea ice model (CICE). The model is referred to as NUIST ESM1 (NESM1). Comprehensive and quantitative metrics are used to assess the model’s major modes of climate variability most relevant to subseasonal-to-interannual climate prediction. The model’s assessment is placed in a multi-model framework. The model yields a realistic annual mean and annual cycle of equatorial SST, and a reasonably realistic precipitation climatology, but has difficulty in capturing the spring-fall asymmetry and monsoon precipitation domains. The ENSO mode is reproduced well with respect to its spatial structure, power spectrum, phase locking to the annual cycle, and spatial structures of the central Pacific (CP)-ENSO and eastern Pacific (EP)-ENSO; however, the equatorial SST variability, biennial component of ENSO, and the amplitude of CP-ENSO are overestimated. The model captures realistic intraseasonal variability patterns, the vertical-zonal structures of the first two leading predictable modes of Madden-Julian Oscillation (MJO), and its eastward propagation; but the simulated MJO speed is significantly slower than observed. Compared with the T42 version, the high resolution version (T159) demonstrates improved simulation with respect to the climatology, interannual variance, monsoon-ENSO lead-lag correlation, spatial structures of the leading mode of the Asian-Australian monsoon rainfall variability, and the eastward propagation of the MJO.

Key words

coupled climate model earth system model climate variability 

References

  1. Annamalai, H., K. Hamilton, and K. R. Sperber, 2007: The south Asian Summer Monsoon and its relationship with ENSO in the IPCC AR4 simulation. J. Climate, 20, 1071–1092.CrossRefGoogle Scholar
  2. An, S.-I., and B. Wang, 2001: Mechanisms of locking of the El Niño and La Nina mature phases to boreal winter. J. Climate, 14, 2164–2176.CrossRefGoogle Scholar
  3. Ashok, K., S. Behera, A. S. Rao, H. Y. Weng, and T. Yamagata, 2007: El Ninõ Modoki and its teleconnection. J. Geophys. Res., 112, C11007, doi: 10.1029/2006JC003798.CrossRefGoogle Scholar
  4. Barnier, B., and Coauthors, 2006: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn., 56, 543–567.CrossRefGoogle Scholar
  5. Bengtsson, L., U. Schlese, E. Roeckner, M. Latif, T. P. Barnett, and N. E. Graham, 1993: A Two-tiered approach to Long-range climate forecasting. Science, 261, 1027–1029.CrossRefGoogle Scholar
  6. Cane, M., S. E. Zebiak, and S. C. Dolan, 1986: Experimental forecasts of El Ninõ. Nature, 321, 827–832.CrossRefGoogle Scholar
  7. Dai, Y. J., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 1013–1023.CrossRefGoogle Scholar
  8. Dai, Y. J., R. E. Dickinson, and Y.-P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17, 2281–2299.CrossRefGoogle Scholar
  9. Davey, M., and Coauthors, 2002: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18, 403–420.CrossRefGoogle Scholar
  10. Ding, Q. H., E. J. Steig, D. S. Battisti, and M. Küttel, 2011: Winter warming inWest Antarctica caused by central tropical Pacific warming. Nature Geoscience, 4, 398–403.CrossRefGoogle Scholar
  11. Ding, Y., Y. Ni, X. Zhang, W. Li, M. Dong, Z.-C. Zhao, Z. Li, and W. Shen, 2000: Introduction to the Short-term Climate Prediction Model System. China Meteorological Press, Beijing, China, 500 pp. (in Chinese)Google Scholar
  12. Fouquart, Y., and B. Bonnel, 1980: Computations of solar heating of the earth’s atmosphere: A new parameterization. Beiträge zur Atmosphärenphysik, 53, 35–62.Google Scholar
  13. Gadgil, S., and S. Sajani, 1998: Monsoon precipitation in the AMIP runs. Climate Dyn., 14, 659–689.CrossRefGoogle Scholar
  14. Goswami, B. N., 1998: Interannual variations of Indian Summer Monsoon in a GCM: External conditions versus internal feedbacks. J. Climate, 11, 501–522.CrossRefGoogle Scholar
  15. Hazeleger, W., and Coauthors, 2010: EC-Earth: A seamless Earth-System prediction approach in action. Bull. Amer. Meteor. Soc., 91, 1357–1363.CrossRefGoogle Scholar
  16. Hewitt, H. T., D. Copsey, I. D. Culverwell, C. M. Harris, R. S. R. Hill, A. B. Keen, A. J. McLaren, and E. C. Hunke, 2011: Design and implementation of the infrastructure of HadGEM3: The next-generation Met Office climate modelling system. Geoscientific Model Development, 4, 223–253.CrossRefGoogle Scholar
  17. Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. J. Gu, 2009: Improving the global precipitation record: GPCP Version 2.1. Geophys. Res. Lett., 36, L17808, doi: 10.1029/2009GL040000.CrossRefGoogle Scholar
  18. Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 4.1. LA-CC-06-012, T-3 Fluid Dynamics Group, Los Alamos National Laboratory, Los Alamos N.M.Google Scholar
  19. Ji, D., and Coauthors, 2014: Description and basic evaluation of BNU-ESM version 1. Geoscientific Model Development Discussions, 7, 1601–1647.CrossRefGoogle Scholar
  20. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.CrossRefGoogle Scholar
  21. Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Climate, 22, 615–632.CrossRefGoogle Scholar
  22. Kim, H.-M., P. J. Webster, and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on north Atlantic tropical cyclones. Science, 325, 77–80.CrossRefGoogle Scholar
  23. Larson, J., R. Jacob, and E. Ong, 2005: The model coupling toolkit: A new Fortran 90 toolkit for building multiphysics parallel coupled models. International Journal of High Performance Computing Applications, 19(3), 277–292.CrossRefGoogle Scholar
  24. Latif, M., and Coauthors, 2001: ENSIP: The El-Niño simulation intercomparison project. Climate Dyn., 18, 255–276.CrossRefGoogle Scholar
  25. Lau, N.-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments. J. Climate, 13, 4287–4309.CrossRefGoogle Scholar
  26. Lee, J.-Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101–119.CrossRefGoogle Scholar
  27. Lee, J.-Y., and Coauthors, 2010: How are seasonal prediction skills related to models’ performance on mean state and annual cycle? Climate Dyn., 35, 267–283.CrossRefGoogle Scholar
  28. Lengaigne, M., G. Madec, L. Bopp, C. Menkes, O. Aumont, and P. Cadule, 2009: Bio-physical feedbacks in the Arctic Ocean using an Earth system model. Geophys. Res. Lett., 36, L21602. doi: 10.1029/2009GL040145.CrossRefGoogle Scholar
  29. Le Sommer, J., T. Penduff, S. Theetten, G. Madec, and B. Barnier, 2009: How momentum advection schemes influence currenttopography interactions at eddy permitting resolution. Ocean Modelling, 29(1), 1–14.CrossRefGoogle Scholar
  30. Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.Google Scholar
  31. Liu, L., G. Yang, B. Wang, C. Zhang, R. Li, Z. Zhang, Y. Ji, and L. Wang, 2014: C-Coupler1: A Chinese community coupler for Earth system modelling. Geoscientific Model Development Discussions, 7, 3889–3936.CrossRefGoogle Scholar
  32. Lohmann, U., and E. Roeckner, 1996: Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Climate Dyn., 12, 557–572.CrossRefGoogle Scholar
  33. Madec, G., and the NEMO team, 2012: NEMO ocean engine. Note du ple de modélisation, No 27, Institut Pierre-Simon Laplace (IPSL), France.Google Scholar
  34. Madec, G., P. Delecluse, M. Imbard, and C. Levy, 1998: OPA 8.1 ocean general circulation model-reference manual. Tech. Rep., LODYC/IPSL Note 11, Institut Pierre-Simon Laplace (IPSL), France, 91 pp.Google Scholar
  35. Manabe, S., and K. Bryan, 1969: Climate calculation with a combined ocean-atmosphere model. J. Atmos. Sci., 26, 786–789.CrossRefGoogle Scholar
  36. Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the Tropical Pacific in Coupled Ocean-Atmosphere General Circulation Models. Mon. Wea. Rev., 123, 2825–2838.CrossRefGoogle Scholar
  37. Mitchell, T. P., and J. M. Wallace, 1992: On the annual cycle in equatorial convection and sea surface temperature. J. Climate, 5, 1140–1156.CrossRefGoogle Scholar
  38. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682.CrossRefGoogle Scholar
  39. Nigam, S., and Y. Chao, 1995: On the evolution of the tropical ocean-atmosphere annual-cycle. TOGA Notes, 18, Nova University Press, 12–16.Google Scholar
  40. Qiao, F. L., Z. Y. Song, Y. Bao, Y. J. Song, Q. Shu, C. J. Huang, and W. Zhao, 2013: Development and evaluation of an Earth System Model with surface gravity waves. J. Geophys. Res.: Oceans, 118, 514–4524.CrossRefGoogle Scholar
  41. Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Rep. No. 349, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 127 pp.Google Scholar
  42. Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Res., 25, 151–169.CrossRefGoogle Scholar
  43. Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 2466–2477.CrossRefGoogle Scholar
  44. Sperber, K. R., and T. N. Palmer, 1996: Interannual tropical rainfall variability in general circulation model simulations associated with the atmospheric model intercomparison project. J. Climate, 9, 2727–2750.CrossRefGoogle Scholar
  45. Tiedtke, M., 1989: A comprehensive mass ux scheme for cumulus parameterization in largescale models. Mon. Wea. Rev., 117, 1779–1800.CrossRefGoogle Scholar
  46. Turner, A. G., P. M. Inness, and J. M. Slingo, 2005: The role of the basic state in the ENSO-monsoon relationship and implications for predictability. Quart. J. Roy. Meteor. Soc., 131, 781–804.CrossRefGoogle Scholar
  47. Vitart, F., W. Robertson, and D. L. T. Anderson, 2012: Subseasonal to Seasonal Prediction Project: Bridging the gap between weather and climate. WMO Bulletin, 61(2), 23–28.Google Scholar
  48. Waliser, D. E., 2011: Predictability and forecasting. Intraseasonal Variability in the Atmosphere-Ocean Climate System, 2nd ed., W. K. M. Lau and D. E. Waliser, Eds., Springer, 433–476.Google Scholar
  49. Waliser, D., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 3006–3030.CrossRefGoogle Scholar
  50. Wang, B., and S.-I. An, 2005: A method for detecting seasondependent modes of climate variability: S-EOF analysis. Geophys. Res. Lett., 32, L15710, doi: 10.1029/2005GL022709.CrossRefGoogle Scholar
  51. Wang, B., and Q. H. Ding, 2008: Global monsoon: Dominant mode of annual variation in the tropics. Dyn. Atmos. Oceans, 44, 165–183.CrossRefGoogle Scholar
  52. Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific-East Asia teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536.CrossRefGoogle Scholar
  53. Wang, B., I.-S. Kang, and J.-Y. Lee, 2004: Ensemble simulations of Asian-Australian Monsoon variability by 11 AGCMs. J. Climate, 17, 803–818.CrossRefGoogle Scholar
  54. Wang, B., Q. H. Ding, X. H. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi: 10.1029/2005GL022734.CrossRefGoogle Scholar
  55. Wang, B., J. Yang, T. J. Zhou, and B. Wang, 2008a: Interdecadal changes in the major modes of Asian-Australian monsoon variability: Strengthening relationship with ENSO since the late 1970s. J. Climate, 21, 1771–1789, doi: 10.1175/2007JCLI1981.1.CrossRefGoogle Scholar
  56. Wang, B., and Coauthors, 2008b: How accurately do coupled climate models predict the leading modes of Asian-Australian monsoon interannual variability? Climate Dyn., 30, 605–619.CrossRefGoogle Scholar
  57. Wang, B., and Coauthors, 2009: Advance and prospect of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retroperspective seasonal prediction (1980–2004). Climate Dyn., 33, 90–117.Google Scholar
  58. Wang, B., H. J. Kim, K. Kikuchi, and A. Kitoh, 2011: Diagnostic metrics for evaluation of annual and diurnal cycles. Climate Dyn., 37, 941–955.CrossRefGoogle Scholar
  59. Wang, B., J.-Y. Lee, and B. Xiang, 2014: Asian summer monsoon rainfall predictability: A predictable mode analysis. Climate Dyn., doi: 10.1007/s00382-014-2218-1.Google Scholar
  60. Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–399.CrossRefGoogle Scholar
  61. Wheeler, M. C., and H. H. Hendon, 2004: An All-season Realtime multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932.CrossRefGoogle Scholar
  62. Xiang, B. Q., B. Wang, Q. H. Ding, F.-F. Jin, X. H. Fu, and H.-J. Kim, 2012: Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation. Climate Dyn., 39, 1413–1430.CrossRefGoogle Scholar
  63. Xiang, B. Q., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing Central Pacific Warming after the late 1990s. Climate Dyn., 41(2), 327–340.CrossRefGoogle Scholar
  64. Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. Kirtman, and F.-F. Jin, 2009: El Ninõ in a changing climate. Nature, 461, 511–514, doi: 10.1038/nature08316.CrossRefGoogle Scholar
  65. Yu, Y. Q., and Coauthors, 2008: Coupled model simulations of climate changes in the 20th century and beyond. Adv. Atmos. Sci., 25(4), 641–654, doi: 10.1007/s00376-008-0641-0.CrossRefGoogle Scholar
  66. Zalesak, S. T., 1979: Fully multidimensional flux corrected transport algorithms for fluids. J. Comput. Phys., 31, 335–362.CrossRefGoogle Scholar
  67. Zebiak, S. E., and M. A. Cane, 1987: A model El-Niño-Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278.CrossRefGoogle Scholar
  68. Zhang, C. D., J. Gottschalck, E. D. Maloney, M. W. Moncrieff, F. Vitart, D. E. Waliser, B. Wang, and M. C. Wheeler, 2013: Cracking the MJO nut. Geophys. Res. Lett., 40, 1223–1230, doi: 10.1002/grl.50244.CrossRefGoogle Scholar

Copyright information

© The Authors 2015

Authors and Affiliations

  • Jian Cao
    • 1
    • 2
    • 3
  • Bin Wang
    • 1
    • 2
    • 3
    • 4
  • Baoqiang Xiang
    • 5
    • 6
  • Juan Li
    • 3
  • Tianjie Wu
    • 1
    • 2
    • 3
  • Xiouhua Fu
    • 1
    • 2
    • 3
  • Liguang Wu
    • 1
    • 2
  • Jinzhong Min
    • 1
    • 2
  1. 1.Earth System Modeling CenterNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Key Laboratory of Meteorological Disaster of Ministry of EducationNanjing University of Information Science and TechnologyNanjingChina
  3. 3.International Pacific Research CenterUniversity of Hawaii at ManoaHonoluluUSA
  4. 4.Department of Atmospheric SciencesUniversity of Hawaii at ManoaHonoluluUSA
  5. 5.NOAA/Geophysical Fluid Dynamics LaboratoryPrincetonUSA
  6. 6.University Corporation for Atmospheric ResearchBoulderUSA

Personalised recommendations