Advertisement

Advances in Atmospheric Sciences

, Volume 32, Issue 7, pp 952–966 | Cite as

Parallel comparison of the northern winter stratospheric circulation in reanalysis and in CMIP5 models

  • Jian Rao
  • Rongcai Ren
  • Yang Yang
Article

Abstract

A parallel comparison is made of the circulation climatology and the leading oscillation mode of the northern winter stratosphere among six reanalysis products and 24 CMIP5 (Coupled Model Intercomparison Project Phase 5) models. The results reveal that the NCEP/NCAR, NECP/DOE, ERA40, ERA-Interim and JRA25 reanalyses are quite consistent in describing the climatology and annual cycle of the stratospheric circulation. The 20CR reanalysis, however, exhibits a remarkable “cold pole” bias accompanied by a much stronger stratospheric polar jet, similar as in some CMIP5 models. Compared to the 1–2 month seasonal drift in most coupled general circulation models (GCMs), the seasonal cycle of the stratospheric zonal wind in most earth system models (ESMs) agrees very well with reanalysis. Similar to the climatology, the amplitude of Polar Vortex Oscillation (PVO) events also varies among CMIP5 models. The PVO amplitude in most GCMs is relatively weaker than in reanalysis, while that in most of the ESMs is more realistic. In relation to the “cold pole” bias and the weaker oscillation in some CMIP5 GCMs, the frequency of PVO events is significantly underestimated by CMIP5 GCMs; while in most ESMs, it is comparable to that in reanalysis. The PVO events in reanalysis (except in 20CR) mainly occur from mid-winter to early spring (January–March); but in some of the CMIP5 models, a 1–2 month delay exists, especially in most of the CMIP5 GCMs. The long-term trend of the PVO time series does not correspond to long-term changes in the frequency of PVO events in most of the CMIP5 models.

Key words

CMIP5 northern winter stratospheric circulation Polar Vortex Oscillation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30937–30946, doi:10.1029/1999jd900445.CrossRefGoogle Scholar
  2. Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581–584.CrossRefGoogle Scholar
  3. Bao, Q., and Coauthors, 2013: The Flexible Global Ocean-Atmosphere-Land system model, Spectral Version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561–576, doi: 10.1007/s00376-012-2113-9.CrossRefGoogle Scholar
  4. Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M-Part 1: Description and basic evaluation of the physical climate. Geoscientific Model Development, 6, 687–720.CrossRefGoogle Scholar
  5. Cai, M., 2003: Potential vorticity intrusion index and climate variability of surface temperature. Geophys. Res. Lett., 30, 1119, doi:10.1029/2002GL015926.CrossRefGoogle Scholar
  6. Cai, M., and R. C. Ren, 2006: 40–70 day meridional propagation of global circulation anomalies. Geophys. Res. Lett., 33, L06818, doi:10.1029/2005GL025024.Google Scholar
  7. Cai, M., and R. C. Ren, 2007: Meridional and downward propagation of atmospheric circulation anomalies. Part I: Northern Hemisphere cold season variability. J. Atmos. Sci., 64, 1880–1901.CrossRefGoogle Scholar
  8. Charlton, A. J., and Coauthors, 2007: A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Climate, 20, 470–488.CrossRefGoogle Scholar
  9. Collins, M., S. F. B. Tett, and C. Cooper, 2001: The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 17, 61–81.CrossRefGoogle Scholar
  10. Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28.CrossRefGoogle Scholar
  11. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.CrossRefGoogle Scholar
  12. Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. J. Climate, 24, 3484–3519.CrossRefGoogle Scholar
  13. Dufresne, J. L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate Dyn., 40, 2123–2165.CrossRefGoogle Scholar
  14. Eyring, V., T. G. Shepherd, and D. W. Waugh, 2010: SPARC report on the evaluation of chemistry-climate models. SPARC report No. 5, WCRP-132, WMO/TD-No. 1526. [Available online at http://www.atmosp.physics.utoronto.ca/SPARC.]Google Scholar
  15. Gent, P. R., and Coauthors, 2011: The Community Climate System Model Version 4. J. Climate, 24, 4973–4991.CrossRefGoogle Scholar
  16. Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, 5, 572–597.CrossRefGoogle Scholar
  17. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.CrossRefGoogle Scholar
  18. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.CrossRefGoogle Scholar
  19. Kim, D., and Coauthors, 2012: The tropical subseasonal variability simulated in the NASA GISS general circulation model. J. Climate, 25, 4641–4659.CrossRefGoogle Scholar
  20. Kodera, K., K. Yamazaki, M. Chiba, and K. Shibata, 1990: Downward propagation of upper stratospheric mean zonal wind perturbation to the troposphere. Geophys. Res. Lett., 17, 1263–1266, doi: 10.1029/Gl017i009p01263.CrossRefGoogle Scholar
  21. Langematz, U., M. Kunze, K. Krüger, K. Labitzke, and G. L. Roff, 2003: Thermal and dynamical changes of the stratosphere since 1979 and their link to ozone and CO2 changes. J. Geophys. Res., 108(D1), 4027, doi:10.1029/2002JD002069.CrossRefGoogle Scholar
  22. Li, L. J., and Coauthors, 2013: The Flexible Global Ocean-Atmosphere-Land system model, Grid-point Version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543–560, doi: 10.1007/s00376-012-2140-6.CrossRefGoogle Scholar
  23. Liu, Y. Z., R. C. Ren, and B. He, 2012: Comparison of SAMIL and BCC AGCM simulations of the polar vortex oscillation in the northern hemisphere winter. Chinese J. Atmos. Sci., 36, 1191–1206. (in Chinese)Google Scholar
  24. Manzini, E., B. Steil, C. Bruhl, M. A. Giorgetta, and K. Kruger, 2003: A new interactive chemistry-climate model: 2. Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling. J. Geophys. Res., 108, 4429, doi:10.1029/2002JD002977.CrossRefGoogle Scholar
  25. Marsh, D. R., M. J. Mills, D. E. Kinnison, J. F. Lamarque, N. Calvo, and L.M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 7372–7391.CrossRefGoogle Scholar
  26. Onogi, K., and Coauthors, 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85, 369–432.CrossRefGoogle Scholar
  27. Pawson, S., and Coauthors, 2000: The GCM-Reality Intercomparison Project for SPARC (GRIPS): Scientific issues and initial results. Bull. Amer. Meteor. Soc., 81, 781–796.CrossRefGoogle Scholar
  28. Ramaswamy, V., M. D. Schwarzkopf, W. J. Randel, B. D. Santer, B. J. Soden, and G. L. Stenchikov, 2006: Anthropogenic and natural influences in the evolution of lower stratospheric cooling. Science, 311, 1138–1141.CrossRefGoogle Scholar
  29. Ramaswamy, V., and Coauthors, 2001: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys., 39, 71–122, doi:10.1029/1999rg000065.CrossRefGoogle Scholar
  30. Randel, W. J., F. Wu, J. M. Russell, and J. Waters, 1999: Spacetime patterns of trends in stratospheric constituents derived from UARS measurements. J. Geophys. Res., 104, 3711–3727, doi:10.1029/1998jd100044.CrossRefGoogle Scholar
  31. Ren, R. C., and M. Cai, 2006: Polar vortex oscillation viewed in an isentropic potential vorticity coordinate. Adv. Atmos. Sci., 23, 884–900, doi: 10.1007/s00376-006-0884-6.CrossRefGoogle Scholar
  32. Ren, R. C., and M. Cai, 2007: Meridional and vertical out-of-phase relationships of temperature anomalies associated with the Northern Annular Mode variability. Geophys. Res. Lett., 34, L07704, doi:10.1029/2006GL028729.Google Scholar
  33. Ren, R. C., and Y. Yang, 2012: Changes in winter stratospheric cir culation in CMIP5 scenarios simulated by the climate system model FGOALS-s2. Adv. Atmos. Sci., 29, 1374–1389, doi: 10.1007/s00376-012-1184-y.CrossRefGoogle Scholar
  34. Ren, R. C., G. X. Wu, C. Ming, and J. J. Yu, 2009: Winter season stratospheric circulation in the SAMIL/LASG general circulation model. Adv. Atmos. Sci., 26, 451–464, doi: 10.1007/s00376-009-0451-z.CrossRefGoogle Scholar
  35. Rotstayn, L. D., M. A. Collier, M. R. Dix, F. Yan, H. B. Gordon, S. P. O’farrell, I. N. Smith, and J. Syktus, 2009: Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. Int. J. Climatol., 30, 1067–1088.Google Scholar
  36. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.CrossRefGoogle Scholar
  37. Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, doi: 10.1029/98gl00950.CrossRefGoogle Scholar
  38. Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 1421–1428.CrossRefGoogle Scholar
  39. Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012.CrossRefGoogle Scholar
  40. Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 2091–2121.CrossRefGoogle Scholar
  41. Volodin, E. M., N. A. Dianskii, and A. V. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izvestiya, Atmospheric and Oceanic Physics, 46, 414–431.CrossRefGoogle Scholar
  42. Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 6312–335.CrossRefGoogle Scholar
  43. Wu, T. W., and Coauthors, 2013: Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. J. Geophys. Res., 118, 4326–4347, doi: 10.1002/jgrd.50320.Google Scholar
  44. Xin, X., T. Wu, and J. Zhang, 2013: Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center. Advances in Climate Change Research, 4, 41–9.CrossRefGoogle Scholar
  45. Yukimoto, S., and Coauthors, 2012: A new global climate model of the meteorological research institute: MRI-CGCM3, model description and basic performance. J. Meteor. Soc. Japan, 90A, 23–64.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations