Advances in Atmospheric Sciences

, Volume 32, Issue 6, pp 807–820 | Cite as

A diagnostic analysis on the effect of the residual layer in convective boundary layer development near Mongolia using 20th century reanalysis data

  • Bo Han
  • Cailing Zhao
  • Shihua Lü
  • Xin Wang


Although the residual layer has already been noted in the classical diurnal cycle of the atmospheric boundary layer, its effect on the development of the convective boundary layer has not been well studied. In this study, based on 3-hourly 20th century reanalysis data, the residual layer is considered as a common layer capping the convective boundary layer. It is identified daily by investigating the development of the convective boundary layer. The region of interest is bounded by (30°–60°N, 80°–120°E), where a residual layer deeper than 2000 m has been reported using radiosondes. The lapse rate and wind shear within the residual layer are compared with the surface sensible heat flux by investigating their climatological means, interannual variations and daily variations. The lapse rate of the residual layer and the convective boundary layer depth correspond well in their seasonal variations and climatological mean patterns. On the interannual scale, the correlation coefficient between their regional averaged (40°–50°N, 90°–110°E) variations is higher than that between the surface sensible heat flux and convective boundary layer depth. On the daily scale, the correlation between the lapse rate and the convective boundary layer depth in most months is still statistically significant during 1970–2012. Therefore, we suggest that the existence of a deep neutral residual layer is crucial to the formation of a deep convective boundary layer near the Mongolian regions.

Key words

convective boundary layer residual layer lapse rate surface sensible heat flux wind shear 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avissar, R., and T. Schmidt, 1998: An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J. Atmos. Sci., 55, 2666–2689.CrossRefGoogle Scholar
  2. Banta, R. M., 1984: Daytime boundary-layer evolution over mountainous terrain. Part 1. Observations of the dry circulations. Mon. Wea. Rev., 112, 340–356.CrossRefGoogle Scholar
  3. Banta, R. M., 1986: Daytime boundary-layer evolution over mountainous terrain. Part II. Numerical-studies of upslope flow duration. Mon. Wea. Rev., 114, 1112–1130.CrossRefGoogle Scholar
  4. Banta, R. M., and Coauthors, 2011: Dependence of daily peak O-3 concentrations near Houston, Texas on environmental factors: Wind speed, temperature, and boundary-layer depth. Atmos. Environ., 45, 162–173.CrossRefGoogle Scholar
  5. Barthlott, C., J. W. Schipper, N. Kalthoff, B. Adler, C. Kottmeier, A. Blyth, and S. Mobbs, 2010: Model representation of boundary-layer convergence triggering deep convection over complex terrain: A case study from COPS. Atmospheric Research, 95, 172–185.CrossRefGoogle Scholar
  6. Bianco, L., I. V. Djalalova, C. W. King, and J. M. Wilczak, 2011: Diurnal evolution and annual variability of boundary-layer height and its correlation to other meteorological variables in California’s Central Valley. Bound.-Layer Meteor., 140, 491–511.CrossRefGoogle Scholar
  7. Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28.CrossRefGoogle Scholar
  8. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.CrossRefGoogle Scholar
  9. Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the integrated global radiosonde archive. J. Climate, 19, 53–68.CrossRefGoogle Scholar
  10. Elliott, W. P., and D. J. Gaffen, 1991: On the utility of radiosonde humidity archives for climate studies. Bull. Amer. Meteor. Soc., 72, 1507–1520.CrossRefGoogle Scholar
  11. Fedorovich, E., R. Conzemius, and D. Mironov, 2004: Convective entrainment into a shear-free, linearly stratified atmosphere: Bulk models reevaluated through large eddy simulations. J. Atmos. Sci, 61, 281–295.CrossRefGoogle Scholar
  12. Fochesatto, G. J., P. Drobinski, C. Flamant, D. Guedalia, C. Sarrat, P. H. Flamant, and J. Pelon, 2001: Evidence of dynamical coupling between the residual layer and the developing convective boundary layer. Bound.-Layer Meteor., 99, 451–464.CrossRefGoogle Scholar
  13. Freire, L. S., and N. L. Dias, 2013: Residual layer effects on the modeling of convective boundary layer growth rates with a slab model using FIFE data. J. Geophys. Res., 118, 12 869–12 878.Google Scholar
  14. Garratt, J. R., 1994: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.Google Scholar
  15. Gentine, P., A. K. Betts, B. R. Lintner, K. L. Findell, C. C. van Heerwaarden, A. Tzella, and F. D’Andrea, 2013a: A probabilistic bulk model of coupled mixed layer and convection. Part I: Clear-sky case. J. Atmos. Sci., 70, 1543–1556.CrossRefGoogle Scholar
  16. Gentine, P., A. K. Betts, B. R. Lintner, K. L. Findell, C. C. van Heerwaarden, and F. D’Andrea, 2013b: A probabilistic bulk model of coupled mixed layer and convection. Part II: Shallow convection case. J. Atmos. Sci., 70, 1557–1576.CrossRefGoogle Scholar
  17. Han, B., S. H. Lu, and Y. H. Ao, 2012: Development of the convective boundary layer capping with a thick neutral layer in Badanjilin: Observations and simulations. Adv. Atmos. Sci., 29, 177–192, doi: 10.1007/s00376-011-0207-4.CrossRefGoogle Scholar
  18. Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 1825–1842.CrossRefGoogle Scholar
  19. Holtslag, A. A. M., E. I. F. Debruijn, and H. L. Pan, 1990: A high-resolution air-mass transformation model for Shortrange weather forecasting. Mon. Wea. Rev., 118, 1561–1575.CrossRefGoogle Scholar
  20. Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339.CrossRefGoogle Scholar
  21. Huang, Q., J. H. Marsham, D. J. Parker, W. S. Tian, and C. M. Grams, 2010: Simulations of the effects of surface heat flux anomalies on stratification, convective growth, and vertical transport within the Saharan boundary layer. J. Geophys. Res.-Atmos., 115, doi: 10.1029/2009JD012689.Google Scholar
  22. Lenschow, D. H., and P. L. Stephens, 1980: The role of thermals in the convective boundary-layer. Bound.-Layer Meteor., 19, 509–532.CrossRefGoogle Scholar
  23. Lin, J. T., and M. B. McElroy, 2010: Impacts of boundary layer mixing on pollutant vertical profiles in the lower troposphere: Implications to satellite remote sensing. Atmos. Environ., 44, 1726–1739.CrossRefGoogle Scholar
  24. Maronga, B., and S. Raasch, 2013: Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 experiment. Bound.-Layer Meteor., 146, 17–44.CrossRefGoogle Scholar
  25. Marsham, J. H., D. J. Parker, C.M. Grams, B. T. Johnson, W. M. F. Grey, and A. N. Ross, 2008: Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara. Atmos. Chem. Phys., 8, 6979–6993.CrossRefGoogle Scholar
  26. Messager, C., D. J. Parker, O. Reitebuch, A. Agusti-Panareda, C. M. Taylor, and J. Cuesta, 2010: Structure and dynamics of the Saharan atmospheric boundary layer during the West African monsoon onset: Observations and analyses from the research flights of 14 and 17 July 2006. Quart. J. Roy. Meteor. Soc., 136, 107–124.CrossRefGoogle Scholar
  27. Moeng, C. H., and P. P. Sullivan, 1994: A comparison of sheardriven and buoyancy-driven planetary boundary-layer flows. J. Atmos. Sci., 51, 999–1022.CrossRefGoogle Scholar
  28. Pan, H. L., and L. Mahrt, 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor., 38, 185–202.CrossRefGoogle Scholar
  29. Parker, D. J., C. D. Thorncroft, R. R. Burton, and A. Diongue-Niang, 2005: Analysis of the African easterly jet, using aircraft observations from the JET2000 experiment. Quart. J. Roy. Meteor. Soc., 131, 1461–1482.CrossRefGoogle Scholar
  30. Ren, X. J., X. Q. Yang, and C. J. Chu, 2010: Seasonal variations of the synoptic-scale transient eddy activity and polar front jet over East Asia. J. Climate, 23, 3222–3233.CrossRefGoogle Scholar
  31. Roy, S. B., and R. Avissar, 2000: Scales of response of the convective boundary layer to land-surface heterogeneity. Geophys. Res. Lett., 27, 533–536.CrossRefGoogle Scholar
  32. Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057.CrossRefGoogle Scholar
  33. Stensrud, D. J., 1993: Elevated residual layers and their influence on surface boundary-layer evolution. J. Atmos. Sci., 50, 2284–2293.CrossRefGoogle Scholar
  34. Stull, R. B., 1976: Mixed-layer depth model based on turbulent energetics. J. Atmos. Sci., 33, 1268–1278.CrossRefGoogle Scholar
  35. Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 670 pp.CrossRefGoogle Scholar
  36. Tennekes, H., 1973: Model for dynamics of inversion above a convective boundary-layer. J. Atmos. Sci., 30, 558–567.CrossRefGoogle Scholar
  37. Thornton, D. C., A. R. Bandy, and J. G. Hudson, 2011: Fast sulfur dioxide measurements correlated with cloud condensation nuclei spectra in the marine boundary layer. Atmos. Chem. Phys., 11, 11 511–11 519.CrossRefGoogle Scholar
  38. Troen, I., and L. Mahrt, 1986: A simple-model of the atmospheric boundary-layer-sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129–148.CrossRefGoogle Scholar
  39. Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012.CrossRefGoogle Scholar
  40. von Storch, H., and F. W. Zwiers, 2001: Statistical Analysis in Climate Research. Cambridge University Press, 494 pp.Google Scholar
  41. Zilitinkevich, S., 2012: The height of the atmospheric planetary boundary layer: State of the art and new development. National Security and Human Health Implications of Climate Change, H. J. S. Fernando, Z. Klaić, and J. L. McCulley, Eds., Springer Netherlands, 147–161.CrossRefGoogle Scholar
  42. Zilitinkevich, S. S., S. A. Tyuryakov, Y. I. Troitskaya, and E. A. Mareev, 2012: Theoretical models of the height of the atmospheric boundary layer and turbulent entrainment at its upper boundary. Izvestiya, Atmospheric and Oceanic Physics, 48, 133–142.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina

Personalised recommendations