Advertisement

Advances in Atmospheric Sciences

, Volume 32, Issue 7, pp 943–951 | Cite as

Tracing the boundary layer sources of carbon monoxide in the Asian summer monsoon anticyclone using WRF-Chem

  • Renchang Yan
  • Jianchun BianEmail author
Article

Abstract

The Asian summer monsoon (ASM) anticyclone is a dominant feature of the circulation in the upper troposphere-lower stratosphere (UTLS) during boreal summer, which is found to have persistent maxima in carbon monoxide (CO). This enhancement is due to the upward transport of air with high CO from the planetary boundary layer (PBL), and confinement within the anticyclonic circulation. With rapid urbanization and industrialization, CO surface emissions are relatively high in the ASM region, especially in India and East China. To reveal the transport pathway of CO surface emissions over these two regions, and investigate the contribution of these to the CO distribution within the ASM anticyclone, a source sensitivity experiment was performed using the Weather Research and Forecasting (WRF) with chemistry model (WRF-Chem). According to the experiment results, the CO within the ASM anticyclone mostly comes from India, while the contribution from East China is insignificant. The result ismainly caused by the different transportation mechanisms. In India, CO transportation is primarily affected by convection. The surface air with high CO over India is directly transported to the upper troposphere, and then confined within the ASM anticyclone, leading to a maximum value in the UTLS region. The CO transportation over East China is affected by deep convection and large-scale circulation, resulting mainly in transportation to Korea, Japan, and the North Pacific Ocean, with little upward transport to the anticyclone, leading to a high CO value at 215 hPa over these regions.

Key words

Asian summer monsoon anticyclone surface emission convection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergman, J. W., F. Fierli, E. J. Jensen, S. Honomichl, and L. L. Pan, 2013: Boundary layer sources for the Asian anticyclone: Regional contributions to a vertical conduit. J. Geophys. Res.: Atmos., 118, 2560–2575.Google Scholar
  2. Berthet, G., J. G. Esler, and P. H. Haynes, 2007: A Lagrangian perspective of the tropopause and the ventilation of the lowermost stratosphere. J. Geophys. Res., 112(D18), doi: 10.1029/2006JD008295.Google Scholar
  3. Chen, B., X. D. Xu, J. C. Bian, and X. H. Shi, 2010: Sources, pathways and timescales for the troposphere to stratosphere transport over Asian monsoon regions in boreal summer. Chinese J. Atmos. Sci., 34(3), 495–505. (in Chinese)Google Scholar
  4. Chen, B., X. D. Xu, S. Yang, and T. L. Zhao, 2012: Climatological perspectives of air transport from atmospheric boundary layer to tropopause layer over Asian monsoon regions during boreal summer inferred from Lagrangian approach. Atmos. Chem. Phys., 12, 4185–4219, doi: 10.5194/acp-12-5827-2012.CrossRefGoogle Scholar
  5. Chen, F., and J. Dudhia, 2001: Coupling an advanced landsurface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129(4), 569–585.CrossRefGoogle Scholar
  6. Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117–142, doi: 10.1007/s00703-005-0125-z.CrossRefGoogle Scholar
  7. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46(20), 3077–3107.CrossRefGoogle Scholar
  8. Emmons, L. K., and Coauthors, 2010: Description and evaluation of the Model for Ozone and Relatedchemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 3, 43–67, doi: 10.5194/gmd-3-43-2010.CrossRefGoogle Scholar
  9. Gettelman, A., D. E. Kinnison, T. J. Dunkerton, and G.P. Brasseur, 2004: Impact of monsoon circulations on the upper troposphere and lower stratosphere. J. Geophys. Res., 109(D22), doi: 10.1029/2004JD004878.Google Scholar
  10. Grell, G.A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 38-1–38-4, doi: 10.1029/2002GL015311.CrossRefGoogle Scholar
  11. Hofmann, D. J., J. Barnes, M. O’Neill1, M. Trudeau, and R. Neely, 2009: Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado. Geophys. Res. Lett., 36(15), doi: 10.1029/2009GL039008.Google Scholar
  12. Hong, S. Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Journal of the Korean Meteorological Society, 42(2), 129–151.Google Scholar
  13. Hoskins, B. J., and M. J. Rodwell, 1995: A model of the Asian summer monsoon I. The global scale. J. Atmos. Sci., 52(9), 1329–1340.CrossRefGoogle Scholar
  14. Livesey, N. J., and Coauthors, 2007: EOS MLS version 2.2 Level 2 data quality and description document. JPL Tech. Doc. JPL D-33509, Jet Propulsion Lab., PasadenaGoogle Scholar
  15. Livesey, N. J., and Coauthors, 2008: Validation of Aura Microwave Limb Sounder O3 and CO observations in the upper troposphere and lower stratosphere. J. Geophys. Res., 113(D15), doi: 10.1029/2007JD008805.Google Scholar
  16. Li, Q. B., and Coauthors, 2005: Convective outflow of South Asianpollution: A global CTM simulation compared with EOS MLS observations. Geophys. Res. Lett., 32(14), doi: 10.1029/2005GL022762.Google Scholar
  17. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Lacono, and S. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102(D14), 16663–16682.CrossRefGoogle Scholar
  18. Neely III, R. R., and Coauthors, 2013: Recent anthropogenic increases in SO2 from Asia have minimal impact on stratospheric aerosol. Geophys. Res. Lett., 40(5), 999–1004, doi: 10.1002/grl.50263.CrossRefGoogle Scholar
  19. Neely III, R. R., P. Yu, K. H. Rosenlof, O.B. Toon, J. S. Daniel, S. Solomon, and H. L. Miller, 2014: The contribution of anthropogenic SO2 emissions to the Asian tropopause aerosol layer. J. Geophys. Res., 119, 1571–1579, doi: 10.1002/2013JD020578.Google Scholar
  20. Park, M., W. J. Randel, D. E. Kinnison, R. R. Garcia, and W. Choi, 2004: Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations. J. Geophys. Res., 109(D13), doi: 10.1029/2003JD003706.Google Scholar
  21. Park, M., W. J. Randel, A. Gettelman, S. T. Massie, and J. H. Jiang, 2007: Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J. Geophys. Res., 112(D16), doi: 10.1029/2006JD008294.Google Scholar
  22. Park, M., W. J. Randel, L. K. Emmons, and N. J. Livesey, 2009: Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART). J. Geophys. Res., 114(D8), doi: 10.1029/2008JD010621.Google Scholar
  23. Randel, W. J., and M. Park, 2006: Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res., 111(12), doi: 10.1029/2005JD006490.Google Scholar
  24. Randel, W. J., F. Wu, A. Gettelman, J. M. Russell III, J. M. Zawodny, and S. J. Oltma, 2001: Seasonal variation of water vapor in the lower stratosphere observed in Halogen occultation experiment data. J. Geophys. Res., 106(D13), 14313–14325.CrossRefGoogle Scholar
  25. Randel, W. J., M. Park, L. Emmons, D. Kinnison, P. Bernath, K. A. Walker, C. Boone, and H. Pumphrey, 2010: Asian monsoon transport of pollution to the stratosphere. Science, 328(5978), 611–613.CrossRefGoogle Scholar
  26. Rosenlof, K. H., A. F. Tuck, K. K. Kelly, J. M. Russell III, and M. P. McCormick, 1997: Hemispheric asymmetries in water vapor and inferences about transport in the lower stratosphere. J. Geophys. Res., 102(D11), 13213–13234, doi: 10.1029/97JD00873.CrossRefGoogle Scholar
  27. Schoeberl, M. R., and Coauthors, 2006: Overview of the EOS aura mission. IEEE Trans. Geosci. Remote Sens., 44(5), 1066–1074, doi: 10.1109/TGRS.2005.861950.CrossRefGoogle Scholar
  28. Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF Version 3. NCAR Tech. Note, NCAR/TN-475+STR, 8 pp.Google Scholar
  29. Solomon, S., J. S. Daniel, R. R. Neely III, J.-P. Vernier, E. G. Dutton, and L. W. Thomason, 2011: The persistently variable background stratospheric aerosol layer and global climate change. Science, 333(6044), 866–870, doi: 10.1126/science.1206027.CrossRefGoogle Scholar
  30. Thomason, L. W., and J. P. Vernier, 2013: Improved SAGE II cloud/aerosol categorization and observations of the Asian tropopause aerosol layer: 1989–2005. Atmos. Chem. Phys., 13(9), 4605–4616.CrossRefGoogle Scholar
  31. Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme, Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542.CrossRefGoogle Scholar
  32. Vernier, J. P., and Coauthors, 2011: Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys. Res. Lett., 38(12), L12807, doi: 10.1029/2011GL047563.CrossRefGoogle Scholar
  33. Waters, J. W., and Coauthors, 2006: The Earth Observing System microwave limb sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens., 44(5), 1075–1092.CrossRefGoogle Scholar
  34. Wang, P. X., S. Clemens, L. Beaufort, P. Braconnot, G. Ganssen, Z. M. Jian, P. Kershaw, and M. Sarnthein, 2005: Evolution and variability of the Asian monsoon system: State of the art and outstanding issues. Quaternary Science Reviews, 24, 595–629.CrossRefGoogle Scholar
  35. Wright, J. S., R. Fu, S. Fueglistaler, Y. S. Liu, and Y. Zhang, 2011: The influence of summertime convection over Southeast Asia on water vapor in the tropical stratosphere. J. Geophys. Res., 116(D12302), doi: 10.1029/2010JD015416.Google Scholar
  36. Xiao, Y. P., D. J. Jacob, and S. Turquety, 2007: Atmospheric acetylene and its relationship with CO as an indicator of air mass age. J. Geophys. Res., 112, D12305, doi: 10.1029/2006JD008268.CrossRefGoogle Scholar
  37. Zhang, Q., and Coauthors, 2009: Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys., 9, 5131–5153.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations