Advances in Atmospheric Sciences

, Volume 32, Issue 6, pp 821–830 | Cite as

Deep convective clouds over the northern Pacific and their relationship with oceanic cyclones



Based on combined CloudSat/CALIPSO detections, the seasonal occurrence of deep convective clouds (DCCs) over the midlatitude North Pacific (NP) and cyclonic activity in winter were compared. In winter, DCCs are more frequent over the central NP, from approximately 30°N to 45°N, than over other regions. The high frequencies are roughly equal to those occurring in this region in summer. Most of these DCCs have cloud tops above a 12 km altitude, and the highest top is approximately 15 km. These wintertime marine DCCs commonly occur during surface circulation conditions of low pressure, high temperature, strong meridional wind, and high relative humidity. Further, the maximum probability of DCCs, according to the high correlation coefficient, was found in the region 10°–20° east and 5°–10° south of the center of the cyclones. The potential relationship between DCCs and cyclones regarding their relative locations and circulation conditions was also identified by a case study. Deep clouds were generated in the warm conveyor belt by strong updrafts from baroclinic flows. The updrafts intensified when latent heat was released during the adjustment of the cyclone circulation current. This indicates that the dynamics of cyclones are the primary energy source for DCCs over the NP in winter.

Key words

CloudSat deep convective clouds marine cyclones northern Pacific 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcala, C. M., and A. E. Dessler, 2002: Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. J. Geophys. Res., 107(D24), AAC 17-1–AAC 17-7, doi: 10.1029/2002JD002457.Google Scholar
  2. Chang, E. K. M., and Y. F. Fu, 2002: Interdecadal variations in Northern Hemisphere winter storm track intensity. J. Climate, 15, 642–658.CrossRefGoogle Scholar
  3. Chang, E. K. M., S. Y. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163–2183.CrossRefGoogle Scholar
  4. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.CrossRefGoogle Scholar
  5. Derbyshire, S. H., I. Beau, P. Bechtold, J. Y. Grandpeix, J. M. Piriou, J. L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 3055–3079.CrossRefGoogle Scholar
  6. Dessler, A. E., 2002: The effect of deep, tropical convection on the tropical tropopause layer. J. Geophys. Res., 107(D3), ACH 6-1–ACH 6-5, doi: 10.1029/2001JD000511.Google Scholar
  7. Ding, Y., 2005: Advanced Synoptic Meteorology. 2nd ed., China Meteorological Press, 585 pp. (in Chinese)Google Scholar
  8. Feng, Z., X. Q. Dong, B. K. Xi, C. Schumacher, P. Minnis, and M. Khaiyer, 2011: Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems. J. Geophys. Res., 116(D23), D23202, doi: 10.1029/2011JD016451.Google Scholar
  9. Fischer, H., and Coauthors, 2003: Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes. Atmos. Chem. Phys., 3, 739–745.CrossRefGoogle Scholar
  10. Gettelman, A., M. L. Salby, and F. Sassi, 2002: Distribution and influence of convection in the tropical tropopause region. J. Geophys. Res., 107(D10), ACL 6-1–ACL 6-12, doi: 10.1029/2001JD001048.Google Scholar
  11. Gouget, H., G. Vaughan, A. Marenco, and H. G. J. Smit, 2000: Decay of a cut-off low and contribution to stratosphere-troposphere exchange. Quart. J. Roy. Meteor. Soc., 126, 1117–1141.CrossRefGoogle Scholar
  12. Govekar, P. D., C. Jakob, M. J. Reeder, and J. Haynes, 2011: The three-dimensional distribution of clouds around Southern Hemisphere extratropical cyclones. Geophys. Res. Lett., 38(21), L21805, doi: 10.1029/2011GL049091.CrossRefGoogle Scholar
  13. Gulev, S. K., O. Zolina, and S. Grigoriev, 2001: Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data. Climate Dyn., 17, 795–809.CrossRefGoogle Scholar
  14. Gyakum, J. R., J. R. Anderson, R. H. Grumm, and E. L. Gruner, 1989: North Pacific Cold-Season surface cyclone activity: 1975–1983. Mon. Wea. Rev., 117, 1141–1155.CrossRefGoogle Scholar
  15. Hall, T. J., and T. H. Vonder Haar, 1999: The diurnal cycle of west Pacific deep convection and its relation to the spatial and temporal variation of tropical MCSs. J. Atmos. Sci., 56, 3401–3415.CrossRefGoogle Scholar
  16. Holland, G. J., A. H. Lynch, and L. M. Leslie, 1987: Australian East-Coast cyclones. 1. Synoptic overview and Case-study. Mon. Wea. Rev., 115, 3024–3036.CrossRefGoogle Scholar
  17. Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946.CrossRefGoogle Scholar
  18. Jiang, J. H., B. Wang, K. Goya, K. Hocke, S. D. Eckermann, J. Ma, D. L. Wu, and W. J. Read, 2004: Geographical distribution and interseasonal variability of tropical deep convection: UARS MLS observations and analyses. J. Geophys. Res., 109, D03111, doi: 10.1029/2003JD003756Google Scholar
  19. Kuang, Z. M., and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 1895–1909.CrossRefGoogle Scholar
  20. Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809–817.CrossRefGoogle Scholar
  21. Li, W., C. Schumacher, and S. A. McFarlane, 2013: Radiative heating of the ISCCP upper level cloud regimes and its impact on the large-scale tropical circulation. J. Geophys. Res., 118, 592–604.CrossRefGoogle Scholar
  22. Lin, B., B. A. Wielicki, P. Minnis, L. Chambers, K. M. Xu, Y. X. Hu, and A. Fan, 2006: The effect of environmental conditions on tropical deep convective systems observed from the TRMM satellite. J. Climate, 19, 5745–5761.CrossRefGoogle Scholar
  23. Liu, C. T., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110(D23), D23104, doi: 10.1029/2005JD006063.CrossRefGoogle Scholar
  24. Liu, C. T., E. J. Zipser, and S. W. Nesbitt, 2007: Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data. J. Climate, 20, 489–503.CrossRefGoogle Scholar
  25. Liu, G. S., J. A. Curry, and R. S. Sheu, 1995: Classification of clouds over the western equatorial Pacific-Ocean using combined infrared and microwave satellite data. J. Geophys. Res., 100(D7), 13 811–13 826, doi: 10.1029/95JD00823.CrossRefGoogle Scholar
  26. Liu, P., Y. Wang, S. Feng, C. Y. Li, and Y. F. Fu, 2012: Climatological characteristics of overshooting convective precipitation in summer and winter over the tropical and subtropical regions. Chinese Journal of Atmospheric Sciences, 36, 579–589. (in Chinese)Google Scholar
  27. Luo, Y. L., R. H. Zhang, W. M. Qian, Z. Z. Luo, and X. Hu, 2011: Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J. Climate, 24, 2164–2177.CrossRefGoogle Scholar
  28. Luo, Z. Z., G. Y. Liu, and G. L. Stephens, 2008: CloudSat adding new insight into tropical penetrating convection. Geophys. Res. Lett., 35(19), L19819, doi: 10.1029/2008GL035330.CrossRefGoogle Scholar
  29. Mace, G. G., R. Marchand, Q. Q. Zhang, and G. Stephens, 2007: Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophys. Res. Lett., 34(9), L09808, doi: 10.1029/2006GL029017.CrossRefGoogle Scholar
  30. Mace, G. G., Q. Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. J. Geophys. Res., 114(D8), D00A26, doi: 10.1029/2007JD009755.Google Scholar
  31. Mapes, B. E., and R. A. Houze, 1993: Cloud clusters and super-clusters over the oceanic warm pool. Mon. Wea. Rev., 121, 1398–1415.CrossRefGoogle Scholar
  32. Naud, C. M., and Y. H. Chen, 2010: Assessment of ISCCP cloudiness over the Tibetan Plateau using CloudSat-CALIPSO. J. Geophys. Res., 115(D10), D10203, doi: 10.1029/2009JD013053.CrossRefGoogle Scholar
  33. Poulida, O., R. R. Dickerson, and A. Heymsfield, 1996: Stratosphere-troposphere exchange in a midlatitude mesoscale convective complex: 1. Observations. J. Geophys. Res., 101(D3), 6823–6836.CrossRefGoogle Scholar
  34. Rodionov, S. N., N. A. Bond, and J. E. Overland, 2007: The Aleutian Low, storm tracks, and winter climate variability in the Bering Sea. Deep Sea Research Part II, 54, 2560–2577.CrossRefGoogle Scholar
  35. Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the bomb. Mon. Wea. Rev., 108, 1589–1606.CrossRefGoogle Scholar
  36. Sherwood, S. C., and A. E. Dessler, 2000: On the control of stratospheric humidity. Geophys. Res. Lett., 27, 2513–2516.CrossRefGoogle Scholar
  37. Sprenger, M., M. Maspoli, and H. Wernli, 2003: Tropopause folds and cross-tropopause exchange: A global investigation based upon ECMWF analyses for the time period March 2000 to February 2001. J. Geophys. Res., 108, doi: 10.1029/2002JD002587.Google Scholar
  38. Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237–273.CrossRefGoogle Scholar
  39. Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, doi: 10.1029/2008JD009982.Google Scholar
  40. Wang, B., R. G. Wu, and K. M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific-east Asian monsoons. J. Climate, 14, 4073–4090.CrossRefGoogle Scholar
  41. Wang, X. M., X. K. Zou, and P. M. Zhai, 2007: Researches on extratropical cyclone variability in the northern hemisphere. Advances in Climate Change Research, 3(3), 154–157. (in Chinese)Google Scholar
  42. Wang, Z., D. Vane, G. Stephens, and D. Reinke, 2013: Level 2 combined radar and lidar cloud scenario classification product process description and interface control document. Jet Propulsion Laboratory California Institute of Technology, 38 pp.Google Scholar
  43. Ye, A. F., Z. F. Wu, W. J. Xiao, S. Hu, and Y. C. Liu, 2006: A study of application of CAPE in severe convective weather prediction. Journal of Tropical Meteorology, 22(5), 484–490. (in Chinese)Google Scholar
  44. Yi, M. J., Y. F. Fu, P. Liu, Z. W. Heng, Y. Gao, and X. Y. Hong, 2012: Analysis of the variation of atmospheric composition in the upper troposphere during a strong convection in eastern China in summer. Chinese Journal of Atmospheric Sciences, 36(5), 901–911. (in Chinese)Google Scholar
  45. Yuan, T. L., and Z. Q. Li, 2010: General macro- and microphysical properties of deep convective clouds as observed by MODIS. J. Climate, 23, 3457–3473.CrossRefGoogle Scholar
  46. Zhang, X. D., J. E. Walsh, J. Zhang, U. S. Bhatt, and M. Ikeda, 2004: Climatology and interannual variability of arctic cyclone activity: 1948–2002. J. Climate, 17, 2300–2317.CrossRefGoogle Scholar
  47. Zhang, Y. X., Y. H. Ding, and Q. P. Li, 2012: Interdecadal variations of extratropical cyclone activities and storm tracks in the Northern Hemisphere. Chinese Journal of Atmospheric Sciences, 36(5), 912–928. (in Chinese)Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mingjian Yi
    • 1
    • 2
  • Yunfei Fu
    • 1
    • 3
  • Peng Liu
    • 1
    • 2
  • Zhixia Zheng
    • 1
  1. 1.University of Science and Technology of ChinaHefeiChina
  2. 2.Anhui Provincial Academy of Environmental SciencesHefeiChina
  3. 3.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina

Personalised recommendations