Advertisement

Advances in Atmospheric Sciences

, Volume 31, Issue 6, pp 1427–1434 | Cite as

Using hourly measurements to explore the role of secondary inorganic aerosol in PM2.5 during haze and fog in Hangzhou, China

  • Roeland Cornelis Jansen
  • Yang Shi
  • Jianmin Chen
  • YunJie Hu
  • Chang Xu
  • Shengmao Hong
  • Jiao Li
  • Min Zhang
Article

Abstract

This paper explores the role of the secondary inorganic aerosol (SIA) species ammonium, NH 4 + , nitrate, NO 3 , and sulfate, SO 4 2− , during haze and fog events using hourly mass concentrations of PM2.5 measured at a suburban site in Hangzhou, China. A total of 546 samples were collected between 1 April and 8 May 2012. The samples were analyzed and classified as clear, haze or fog depending on visibility and relative humidity (RH). The contribution of SIA species to PM2.5 mass increased to ∼50% during haze and fog. The mass contribution of nitrate to PM2.5 increased from 11% during clear to 20% during haze episodes. Nitrate mass exceeded sulfate mass during haze, while near equal concentrations were observed during fog episodes. The role of RH on the correlation between concentrations of SIA and visibility was examined, with optimal correlation at 60%–70% RH. The total acidity during clear, haze and fog periods was 42.38, 48.38 and 45.51 nmol m−3, respectively, indicating that sulfate, nitrate and chloride were not neutralized by ammonium during any period. The nitrate to sulfate molar ratio, as a function of the ammonium to sulfate molar ratio, indicated that nitrate formation during fog started at a higher ammonium to sulfate molar ratio compared to clear and haze periods. During haze and fog, the nitrate oxidation ratio increased by a factor of 1.6–1.7, while the sulfur oxidation ratio increased by a factor of 1.2–1.5, indicating that both gaseous NO2 and SO2 were involved in the reduced visibility.

Key words

haze secondary inorganic aerosol PM2.5 Yangtze River Delta 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chan, C. K., and X. H. Yao, 2008: Air pollution in mega cities in China. Atmos. Environ., 42(1), 1–42.CrossRefGoogle Scholar
  2. Chang, D., Y. Song, and B. Liu, 2009: Visibility trends in six megacities in China 1973-2007. Atmospheric Research, 94, 161–167.CrossRefGoogle Scholar
  3. Che, H. Z., X. Y. Zhang, Y. Li, Z. J. Zhou, J. J. Qu, and X. J. Hao, 2009: Haze trends over the capital cities of 31 provinces in China, 1981–2005. Theor. Appl. Climatol., 97(3–4), 235–242.CrossRefGoogle Scholar
  4. Du, H. H., and Coauthors, 2011: Insight into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. Atmos. Environ., 45(29), 5131–5137.CrossRefGoogle Scholar
  5. Fu, Q. Y., and Coauthors, 2008: Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmos. Environ., 42(9), 2023–2036.CrossRefGoogle Scholar
  6. He, K. B., Q. Zhao, Y. Ma, F. Duan, F. Yang, Z. Shi, and G. Chen, 2012: Spatial and seasonal variaility of PM2.5 acidity at two Chinese megacities: Insight into the formation of secondary inorganic aerosols. Atmos. Chem. Phys., 12(3), 1377–1395.CrossRefGoogle Scholar
  7. Huang, K., and Coauthors, 2012: Typical types and formation mechanisms of haze in an eastern Asia megacity, Shanghai. Atmos. Chem. Phys., 12(1), 105–124.CrossRefGoogle Scholar
  8. Jimenez, J. L., and Coauthors, 2009: Evolution of organic aerosol in the atmosphere. Science, 326, 1525–1529.CrossRefGoogle Scholar
  9. Kang, C. M., H. S. Lee, B. W. Kang, S. K. Lee, and Y. Sunwoo, 2004: Chemical characteristics of acidic gas pollutants and PM2.5 species during haze episodes in Seoul, South Korea. Atmos. Environ., 38(28), 4749–4760.CrossRefGoogle Scholar
  10. Khlystov, A., G. P. Wyers, and J. Slanina, 1995: The steam-jet aerosol collector. Atmos. Environ., 29, 2229–2234.CrossRefGoogle Scholar
  11. Kim, K. W., Y. J. Kim, and S. Y. Bang, 2008: Summer time haze characteristics of the urban atmosphere of Gwangju and the rural atmosphere of Anmyon, Korea. Environ. Monit. Assess., 141(1–3), 189–199.CrossRefGoogle Scholar
  12. Lee, Y. L., and R. Sequeira, 2002: Water-soluble aerosol and visibility degradation in Hong Kong during autumn and early winter, 1998. Environ. Poll., 116(2), 225–233.CrossRefGoogle Scholar
  13. Makkonen, U., A. Virkkula, J. Mantykentta, H. Hakola, P. Keronen, V. Vakkari, and P. P. Aalto, 2012: Semi-continuous gas and inorganic aerosol measurements at a Finnish urban site: Comparisons with filters, nitrogen in aerosol and gas phases, and aerosol acidity. Atmos. Chem. Phys., 12(12), 5617–5631.CrossRefGoogle Scholar
  14. Malm, W. C., and D. E. Day, 2001: Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmos. Environ., 35(16), 2845–2860.CrossRefGoogle Scholar
  15. Pathak, R. K., X. H. Yao, and C. K. Chan, 2004: Sampling artifacts of acidity and ionic species in PM2.5. Environ. Sci. Technol., 38(1), 254–259.CrossRefGoogle Scholar
  16. Pathak, R. K., W. S. Wu, and T. Wang, 2009: Summertime PM2.5 ionic species in four major cities of China: Nitrate formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys., 9(5), 1711–1722.Google Scholar
  17. Sisler, J. F., and W. C. Malm, 1994: The relative importance of soluble aerosols to spatial and seasonal trends of impaired visibility in the United States. Atmos. Environ., 28(5), 851–862.CrossRefGoogle Scholar
  18. Slanina, J., and Coauthors, 2001: The continuous analysis of nitrate and ammonium in aerosols by the team jet aerosol collector (SJAC): Extension and validation of the methodology. Atmos. Environ., 35(13), 2319–2330.CrossRefGoogle Scholar
  19. Sun, Y. L., G. S. Zhuang, A. Tang, Y. Wang, and Z. S. An, 2006: Chemical characteristics of PM2.5 and PM10 in Haze-Fog episodes in Beijing. Environ. Sci. Technol., 40, 3148–3155.CrossRefGoogle Scholar
  20. Sun, Y. L., Z. F. Wang, P. Q. Fu, Q. Jiang, T. Yang, J. Li, and X. J. Ge, 2013: The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmos. Environ., 77, 927–934.CrossRefGoogle Scholar
  21. Tan, J., J. Duan, K. B. He, Y. Ma, F. Duan, Y. Chen, and J. Fu, 2009: Chemical characteristics of PM2.5 during a typical haze episode in Guangzhou. Journal of Environmental Sciences, 21(6), 774–781.CrossRefGoogle Scholar
  22. TenBrink, H. M., J. P. Veefkind, A. Waijersljpelaan, and J. C. vanderHage, 1996: Aerosol light scattering in the Netherlands. Atmos. Environ., 30(24), 4251–4261.CrossRefGoogle Scholar
  23. Trebs, I., F. X. Meixner, J. Slanina, R. Otjes, P. Jongejan, and M. O. Andreae, 2004: Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic species at a ruralsite in the Amazon Basin. Atmos. Chem. Phys., 4, 967–987.CrossRefGoogle Scholar
  24. Wang, J. L., and X. L. Liu, 2006: The discussion on relationship between visibility and mass concentration of PM2.5 in Beijing. Acta Meteorologica Sinica, 64, 221–228. (in Chinese)Google Scholar
  25. Wang, Y., G. S. Zhuang, A. Tang, H. Yuan, Y. Sun, S. Chen, and A. Zheng, 2005: The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmos. Environ., 39(21), 3771–3784.CrossRefGoogle Scholar
  26. Wang, Y., G. S. Zhuang, Y. Sun, and Z. S. An, 2006: The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos. Environ., 40(34), 6579–6591.CrossRefGoogle Scholar
  27. Warneck, P., 2000: Chemistry of the Natural Atmosphere. Volume 71, 2nd ed., Acedemic Press, Inc., New York, 927 pp.Google Scholar
  28. Wu, D., X. X. Tie, C. C. Li, Z. M. Ying, A. K. Lau, and J. Huang, 2005: An extremely low visibility event over the Guangzhou region: A case study. Atmos. Environ., 39(35), 6568–6577.CrossRefGoogle Scholar
  29. Wyers, G. P., R. P. Otjes, and J. Slanina, 1993: A continuous-flow denuder for the measurement of ambient concentrations and surface-exchange fluxes of ammonia. Atmos. Environ., 27A(3), 2085–2090.CrossRefGoogle Scholar
  30. Xiao, Z. M., Y. F. Zhang, S. M. Hong, X. H. Bi, L. Jiao, Y. C. Feng, and Y. Q. Wang, 2011: Estimation of the main factors influencing haze, based on a long-term monitoring campaign in Hangzhou, China. Aerosol Air Qual. Res., 11(7), 873–882.Google Scholar
  31. Yao, X. H., T. Y. Ling, M. Fang, and C. Chan, 2006: Comparison of thermodynamic predictions for in situ pH in PM2.5. Atmos. Environ., 40(16), 2835–2844.CrossRefGoogle Scholar
  32. Ye, X. N., and Coauthors, 2011: Important role of ammonia on haze formation in Shanghai. Environ. Res. Lett., 6(2), doi: 10.1088/1748-9326/6/2/024019.Google Scholar
  33. Zhang, Q., J. L. Jimenez, D. R. Worsnop, and M. Canagaratna, 2007: A case study of urban particle acidity and its influence on secondary organic aerosol. Environ. Sci. Technol., 41(9), 3213–3219.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Roeland Cornelis Jansen
    • 1
  • Yang Shi
    • 1
  • Jianmin Chen
    • 1
  • YunJie Hu
    • 1
  • Chang Xu
    • 2
  • Shengmao Hong
    • 2
  • Jiao Li
    • 2
  • Min Zhang
    • 3
  1. 1.Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & EngineeringFudan UniversityShanghaiChina
  2. 2.Hangzhou Municipal Environmental Monitoring CenterHangzhouChina
  3. 3.Key Laboratory of Data Analysis and Application, the First Institute of OceanographyState Oceanic AdministrationQingdaoChina

Personalised recommendations