Advances in Atmospheric Sciences

, Volume 31, Issue 6, pp 1316–1330 | Cite as

The hiatus and accelerated warming decades in CMIP5 simulations

  • Yi Song
  • Yongqiang YuEmail author
  • Pengfei Lin


Observed hiatus or accelerated warming phenomena are compared with numerical simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archives, and the associated physical mechanisms are explored based on the CMIP5 models. Decadal trends in total ocean heat content (OHC) are strongly constrained by net top-of-atmosphere (TOA) radiation. During hiatus decades, most CMIP5 models exhibit a significant decrease in the SST and upper OHC and a significant increase of heat penetrating into the subsurface or deep ocean, opposite to the accelerated warming decades. The shallow meridional overturning of the Pacific subtropical cell experiences a significant strengthening (slowdown) for the hiatus (accelerated warming) decades associated with the strengthened (weakened) trade winds over the tropical Pacific. Both surface heating and ocean dynamics contribute to the decadal changes in SST over the Indian Ocean, and the Indonesian Throughflow has a close relationship with the changes of subsurface temperature in the Indian Ocean. The Atlantic Meridional Overturing Circulation (Antarctic Bottom Water) tends to weaken (strengthen) during hiatus decades, opposite to the accelerated warming decades. In short, the results highlight the important roles of air-sea interactions and ocean circulations for modulation of surface and subsurface temperature.

Key words

global warming decadal variability CMIP5 hiatus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arora, V. K., and Coauthers, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.CrossRefGoogle Scholar
  2. Bao, Q., and Coanthers, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALSs2. Advances in Atmospheric Sciences, 30, 561–576.CrossRefGoogle Scholar
  3. Brix, H., and R. Gerdes, 2003: North Atlantic deep water and Antarctic bottom water: Their interaction and influence on the variability of the global ocean circulation. J. Geophys. Res., 108(C2), 1–18, doi:10.1029/2002JC001335.Google Scholar
  4. Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.CrossRefGoogle Scholar
  5. Clarke, A. J., and X. Liu, 1994: Interannual sea level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24, 1224–1235.CrossRefGoogle Scholar
  6. Collins, M., S. F. B. Tett, and C. Cooper, 2001: The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics, 17, 61–81, doi:10.1007/s003820000094.CrossRefGoogle Scholar
  7. Collins, W. J. and Coauthors, 2011: Development and evaluation of an Earth-system model-HadGEM2. Geosci. Model Dev., 4, 1051–1075.CrossRefGoogle Scholar
  8. Dai, A. G., 2012: The influence of the Inter-decadal Pacific Oscillation on US precipitation during 1923–2010. Climate Dyn., 41, 633–646.CrossRefGoogle Scholar
  9. Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multi-decadal variability in the Northern Hemisphere. Climate Dyn., 16, 661–676.CrossRefGoogle Scholar
  10. Delworth, T. L., and R. J. Greatbatch, 2000: Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Climate, 13(9), 1481–1495.CrossRefGoogle Scholar
  11. Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. Journal of Climate, 24(13): 3484–3519.CrossRefGoogle Scholar
  12. Dufresne, J. L., and Coauthors, 2012: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 2123–2165, doi: 10.1007/s00382-012-1636-1.CrossRefGoogle Scholar
  13. Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 Global Coupled Climate-Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. Journal of Climate, 25(19).Google Scholar
  14. Easterling, D. R., and M. F. Wehner, 2009: Is the climate warming or cooling?. Geophys. Res. Lett., 36, L08706, doi:10.1029/2009GL037810.CrossRefGoogle Scholar
  15. Eden, C., and T. Jung, 2001: North Atlantic interdecadal variability: Oceanic response to the North Atlantic Oscillation (1865–1997). J. Climate, 14(5), 676–691.CrossRefGoogle Scholar
  16. Gent, P. R., and Coauthors, 2011: The Community Climate System Model Version 4. J. Climate, 24, 4973–4991. doi: 10.1175/2011JCLI4083.1CrossRefGoogle Scholar
  17. Gordon, A. L., R. D. Susanto, and A. Ffield, 1999: Throughflow within Makassar Strait. Geophys. Res. Lett., 26, 3325–3328.CrossRefGoogle Scholar
  18. Hansen, J., R. Ruedy, M. Sato, M. Imhoff, W. Lawrence, D. Easterling, T. Peterson, and T. Karl, 2001: A closer look at United States and global surface temperature change. J. Geophys. Res., 106(D20), 23947–23963.CrossRefGoogle Scholar
  19. Held, I. M., 2013: Climate science: The cause of the pause. Nature, 501, 318–319.CrossRefGoogle Scholar
  20. Ilyina, T., and Coauthors, 2013: Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. Journal of Advances in Modeling Earth Systems, 5(2), 287–315.Google Scholar
  21. Ishii, M., and M. Kimoto, 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr., 65, 287–299.CrossRefGoogle Scholar
  22. Jones, C. D. and Coauthors, 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543–570, doi:10.5194/gmd-4-543-2011.CrossRefGoogle Scholar
  23. Katsman, C. A., and G. J. van Oldenborgh, 2011: Tracing the upper ocean’s “missing heat”. Geophys. Res. Lett., 38, L14610, doi:10.1029/2011GL048417.Google Scholar
  24. Kaufmann, R. K., H. Kauppib, M. L. Mann, and J. H. Stock, 2011: Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc. Natl. Acad. Sci. USA, 108(29), 11790–11793.CrossRefGoogle Scholar
  25. Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932.CrossRefGoogle Scholar
  26. Klinger, B. A., J. P. McCreary, and R. Kleeman, 2002: The relationship between oscillating subtropical wind stress and equatorial temperature. J. Phys. Oceanogr., 32, 1507–1521.CrossRefGoogle Scholar
  27. Knight, J., and Coauthors, 2009: Do global temperature trends over the last decade falsify climate predictions?. Bull. Amer. Meteor. Soc., 90, S20–S21.Google Scholar
  28. Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708. doi: 10.1029/2005GL024233.CrossRefGoogle Scholar
  29. Knox, R. S., and D. H. Douglass, 2010: Recent energy balance of earth. International Journal of Geosciences, 1(3), 99–101, doi:10.4236/ijg.2010.13013.CrossRefGoogle Scholar
  30. Kosaka, Y., and S. P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501(7467), 403–407.CrossRefGoogle Scholar
  31. Kouketsu, S., T. Doi, T. Kawano, and S. Masuda, 2011: Deep ocean heat content changes estimated from observation and reanalysis product and their influence on sea level change. J. Geophys. Res., 116, C03012, doi:10.1029/2010JC006464.Google Scholar
  32. Latif, M., C. Böning, J. Willebrand, A. Biastoch, J. Dengg, N. Keenlyside, and U. Schweckendiek, 2006: Is the thermohaline circulation changing?. J. Climate, 19(18), 4631–4637.CrossRefGoogle Scholar
  33. Lau, N. C., 1997: Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull. Amer. Meteor. Soc., 78(1), 21–33.CrossRefGoogle Scholar
  34. Lau, N. C., and M. J. Nath, 2001: Impact of ENSO on SST variability in the North pacific and North Atlantic: Seasonal dependence and role of extratropical sea-air coupling. J. Climate, 14(13), 2846–2866.CrossRefGoogle Scholar
  35. Lee, T., and M. J. McPhaden, 2008: Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys. Res. Lett., 35(1), L01605, doi:10.1029/2007GL032419.CrossRefGoogle Scholar
  36. Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, doi:10.1029/2008GL037155.Google Scholar
  37. Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, doi:10.1029/2012GL051106.CrossRefGoogle Scholar
  38. Liu, J. L., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, doi:10.1029/2005RG000172.Google Scholar
  39. Lyman, J. M., S. A. Good, V. V. Gouretski, M. Ishii, G. C. Johnson, M. D. Palmer, D. M. Smith, and J. K. Willis, 2010: Robust warming of the global upper ocean. Nature, 465, 334–337, doi: 10.1038/nature09043.CrossRefGoogle Scholar
  40. McPhaden, M. J., and D. X. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415, 603–608.CrossRefGoogle Scholar
  41. McPhaden, M. J., and D. X. Zhang, 2004: Pacific ocean circulation rebounds. Geophys. Res. Lett., 31, L18301, doi:10.1029/2004GL020727.CrossRefGoogle Scholar
  42. Meehl, G. A., J. M. Arblaster, J. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep ocean heat uptake during surface temperature hiatus periods. Nature Climate Change, 1, 360–364, doi: 10.1038/NCLIMATE1229.CrossRefGoogle Scholar
  43. Meehl, G. A., A. Hu, J. M. Arblaster, J. Fasullo, and K. Trenberth, 2013: Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J. Climate, 26, 7298–7310, doi: 10.1175/JCLI-D-12-00548.1.CrossRefGoogle Scholar
  44. Meyers, G., 1996: Variation of Indonesian throughflow and the El Niño-Southern Oscillation. J. Geophys. Res., 101(C5), 12255–12263, doi: 10.1029/95JC03729.CrossRefGoogle Scholar
  45. Miller, R. L., and Coauthors, 2014: CMIP5 historical simulations (1850–2012) with GISS ModelE2. Journal of Advances in Modeling Earth Systems.Google Scholar
  46. Nigam, S., and H. S. Shen, 1993: Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian oceans. Part I: COADS observations. J. Climate, 6, 657–676.CrossRefGoogle Scholar
  47. Nonaka, M., S. P. Xie, and J. P. McCreay, 2002: Decadal variations in the subtropical cells and equatorial Pacific SST. Geophys. Res. Lett., 29(7), 1116, doi:10.1029/2001GL013717.CrossRefGoogle Scholar
  48. Otterå, O. H., M. Bentsen, H. Drange, and L. L. Sou, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nature Geoscience, 3(10), 688–694.CrossRefGoogle Scholar
  49. Palmer, M. D., D. J. McNeall, and N. J. Dunstone, 2011: Importance of the deep ocean for estimating decadal changes in Earth’s radiation balance. Geophys. Res. Lett., 38(13), L13707, doi:10.1029/2011GL047835.CrossRefGoogle Scholar
  50. Potemra, J. T., S. L. Hautala, and J. Sprintall, 2003: Vertical structure of Indonesian throughflow in a large-scale model. Deep-Sea Res. II, 50, 2143–2162.CrossRefGoogle Scholar
  51. Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 6336–6351, doi:10.1175/2010JCLI3682.1.CrossRefGoogle Scholar
  52. Rotstayn, L. D., and Coauthors, 2010: Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. International Journal of Climatology, 30, 1067–1088, doi:10.1002/joc.1952.Google Scholar
  53. Schott, F. A., S. P. Xie, and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.Google Scholar
  54. Smith, T. M., and R. W. Reynolds, 2005: A global merged landair-sea surface temperature reconstruction based on historical observations (1880–1997). J. Climate, 18, 2021–2036.CrossRefGoogle Scholar
  55. Solomon, A., J. P. McCreary, R. Kleeman, and B. A. Klinger, 2003: Interannual and decadal variability in an intermediate coupled model of the Pacific region. J. Climate, 16, 383–405.CrossRefGoogle Scholar
  56. Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G. K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327(5970), 1219–1223, doi:10.1126/science.1182488.CrossRefGoogle Scholar
  57. Swingedouw, D., T. Fichefet, H. Goosse, and M. F. Loutre, 2009: Impact of transient freshwater releases in the Southern Ocean on the AMOC and climate. Climate Dyn., 33(2–3), 365–381.CrossRefGoogle Scholar
  58. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi: 10.1175/BAMS-D-11-00094.1.CrossRefGoogle Scholar
  59. Tjiputra, J. F., and Coauthers, 2013: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci. Model Dev., 6, 301–325, doi:10.5194/gmd-6-301-2013.CrossRefGoogle Scholar
  60. Trenberth, K. E., 2009: An imperative for climate change planning: Tracking Earth’s global energy. Current Opinion in Environmental Sustainability, 1(1), 19–27.CrossRefGoogle Scholar
  61. Trenberth, K. E., and J. T. Fasullo, 2010: Tracking Earth’s energy. Science, 328(5976), 316–317.CrossRefGoogle Scholar
  62. Trenberth, K. E., and J. T. Fasullo, 2011: Tracking earth’s energy: From El Niño to global warming. Surv. Geophys., 33, 413–426, doi: 10.1007/s10712-011-9150-2.CrossRefGoogle Scholar
  63. Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311–323.CrossRefGoogle Scholar
  64. Tung, K. K., and J. Zhou, 2013: Using data to attribute episodes of warming and cooling in instrumental records. Proc. Natl. Acad. Sci. USA, 110(6), 2058–2063.CrossRefGoogle Scholar
  65. Vranes, K., A. L. Gordon, and A. Ffield, 2002: The heat transport of the Indonesian throughflow and implications for the Indian Ocean heat budget. Deep-Sea Res. II, 49, 1391–1410.CrossRefGoogle Scholar
  66. Voldoire, A., and Coauthors, 2011: The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics, 1–31.Google Scholar
  67. Wang, T., O. H. Otterå, Y. Gao, and H. Wang, 2012: The response of the North Pacific decadal variability to strong tropical volcanic eruptions. Climate Dyn., 39(12), 2917–2936, doi: 10.1007/s00382-012-1373-5.CrossRefGoogle Scholar
  68. Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: model description and basic results of CMIP 5-20c3m experiments. Geoscientific Model Development, 4(4), 845–872.CrossRefGoogle Scholar
  69. Wu, T.W., and Coauthors, 2013: Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. J. Geophys. Res. Atmos., 118, 4326–4347, doi: 10.1002/jgrd.50320.CrossRefGoogle Scholar
  70. Xie, S. P., H. Annamalai, F. Schott, and J. P. McCreary, 2002: Origin and predictability of South Indian Ocean climate variability. J. Climate, 15, 864–874.CrossRefGoogle Scholar
  71. Yang, H., Y. Wang, and Z. Liu, 2013: A modelling study of the Bjerknes compensation in the meridional heat transport in a freshening ocean. Tellus A., 65, 18480, doi: 10.3402/tellusa.v65i0.18480.Google Scholar
  72. Yu, Y. Q., and Y. Song, 2013: The modulation of ocean circulation to the global warming trend: Numerical simulation by FGOALS-s2. Chinese J. Atmos. Sci., 37(2), 395–410, doi:10.3878/j.issn.1006-9895.2012.12306. (in Chinese)Google Scholar
  73. Yukimoto, S., and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3: model description and basic performance (special issue on recent development on climate models and future climate projections). J. Meteor. Soc. Japan, 90, 23–64.CrossRefGoogle Scholar
  74. Zanchettin, D., C. Timmreck, H. F. Graf, A. Rubino, S. Lorenz, K. Lohmann, K. Krüger, and J. H. Jungclaus, 2012: Bi-decadal variability excited in the coupled ocean-atmosphere system by strong tropical volcanic eruptions. Climate Dyn., 39(1–2), 419–444.CrossRefGoogle Scholar
  75. Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi: 10.1029/2006GL026267.CrossRefGoogle Scholar
  76. Zwiers, F. W., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336–351.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.College of Earth ScienceUniversity of the Chinese Academy of SciencesBeijingChina

Personalised recommendations