Advances in Atmospheric Sciences

, Volume 32, Issue 3, pp 349–362 | Cite as

A validation of the multivariate and minimum residual method for cloud retrieval using radiance from multiple satellites

Article

Abstract

The Multivariate and Minimum Residual (MMR) cloud detection and retrieval algorithm, previously developed and tested on simulated observations and Advanced Infrared Sounder radiance, was explored and validated using various radiances from multiple sensors. For validation, the cloud retrievals were compared to independent cloud products from CloudSat, MODIS (Moderate Resolution Imaging Spectroradiometer), and GOES (Geostationary Operational Environmental Satellites). We found good spatial agreement within a single instrument, although the cloud fraction on each pixel was estimated independently. The retrieved cloud properties showed good agreement using radiances from multiple satellites, especially for the vertically integrated cloud mask. The accuracy of the MMR scheme in detecting mid-level clouds was found to be higher than for higher and lower clouds. The accuracy in retrieving cloud top pressures and cloud profiles increased with more channels from observations. For observations with fewer channels, the MMR solution was an “overly smoothed” estimation of the true vertical profile, starting from a uniform clear guess. Additionally, the retrieval algorithm showed some meaningful skill in simulating the cloudy radiance as a linear observation operator, discriminating between numerical weather prediction (NWP) error and cloud effects. The retrieval scheme was also found to be robust when different radiative transfer models were used. The potential application of the MMR algorithm in NWP with multiple radiances is also discussed.

Key words

cloud retrieval radiance cloud fraction observation operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auligné, T., 2007: Variational assimilation of infrared hyperspectral sounders data: Bias correction and cloud detection. Ph. D. thesis, University Paul Sabatier, 222 pp.Google Scholar
  2. Auligné, T., A. Lorenc, Y. Michel, T. Montmerle, A. Jones, M. Hu, and J. Dudhia, 2011: Toward a new cloud analysis and prediction system. Bull. Amer. Meteor. Soc., 92, 207–210.CrossRefGoogle Scholar
  3. Auligné, T., 2014a: Multivariate minimum residual method for cloud retrieval. part I: Theoretical aspects and simulated observation experiments. Mon. Wea. Rev., doi: http://dx.doi.org/10.1175/MWR-D-13-00172.1.Google Scholar
  4. Auligné, T., 2014b: Multivariate minimum residual method for cloud retrieval. Part II: Real observations experiments. Mon. Wea. Rev., doi: http://dx.doi.org/10.1175/MWR-D-13-00173.1, in press.Google Scholar
  5. Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253–264.CrossRefGoogle Scholar
  6. Barker, D. M., and Coauthors, 2012: The Weather Research and Forecasting (WRF) model’s community variational/ensemble data assimilation system: WRFDA. Bull. Amer. Meteor. Soc., 93, 831–843.CrossRefGoogle Scholar
  7. Bayler, G. M., R. M. Aune, and W. H. Raymond, 2000: NWP cloud initialization using GOES sounder data and improved modeling of nonprecipitating clouds. Mon. Wea. Rev., 128, 3911–3920.CrossRefGoogle Scholar
  8. Blumstein, D., and Coauthors, 2004: IASI instrument: Technical overview and measured performances. Proc. SPIE, 5543, 196–207.CrossRefGoogle Scholar
  9. Chahine, M. T., 1975: An analytical transformation for remote sensing of Clear-Column atmospheric temperature profiles. J. Atmos. Sci., 32, 1946–1952.CrossRefGoogle Scholar
  10. Evan, A. T., A. K. Heidinger, and D. J. Vimont, 2007: Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys. Res. Lett., 34(4), doi: 10.1029/2006GL028083.Google Scholar
  11. Eyre, J. R., 1991: A fast radiative transfer model for satellite sounding systems. ECMWF Research Dept. Tech. Memo., No. 176, ECMWF, 28 pp.Google Scholar
  12. Eyre, J. R., W. P., Menzel, 1989: Retrieval of cloud parameters from satellite sounder data: A simulation study. J. Appl. Meteor., 28, 267–275.CrossRefGoogle Scholar
  13. Gilbert, J. C., and C. Lemaréchal, 1989: Some numerical experiments with variable-storage quasi-Newton algorithms. Math ematical Programming, 45, 407–435.CrossRefGoogle Scholar
  14. Goldberg, M., Y. Qu, L. McMillin, W. Wolf, L. Zhou, and M. Divakarla, 2003: AIRS Near-Real-Time products and algorithms in support of operational numerical weather prediction. IEEE Trans. Geosci. Remote Sens., 41, 379–389.CrossRefGoogle Scholar
  15. Han, Y., P. V. Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, 2006: JCSDA Community Radiative Transfer Model (CRTM)—Version 1. NOAA Tech. Rep. NESDIS, No. 122, 33 pp.Google Scholar
  16. Hu, M., M. Xue, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D Level-II data for the prediction of the fort worth, Texas, Tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675–698.CrossRefGoogle Scholar
  17. Huang, H. L., W. L. Smith, J. Li, P. Antonelli, X. Q. Wu, R. O. Knuteson, B. Huang, and B. J. Osborne, 2004: Minimum local emissivity variance retrieval of cloud altitude and effective spectral emissivity—Simulation and initial verification. J. Appl. Meteor., 43, 795–809.CrossRefGoogle Scholar
  18. Liu, Q., and F. Weng, 2006: Advanced doubling-adding method for radiative transfer in planetary atmosphere. J. Atmos. Sci., 63, 3459–3465.CrossRefGoogle Scholar
  19. Li, J., and Coauthors, 2005: Retrieval of cloud microphysical properties from MODIS and AIRS. J. Appl. Meteor., 44, 1526–1543.CrossRefGoogle Scholar
  20. Li, Z., M. C. Cribb, F. L. Chang, and A. P. Trishchenko, 2004: Validation of MODIS-retrieved cloud fractions using whole sky imager measurements at the three ARM sites. Proceedings of the 14 th Atmospheric Radiation Measurement (ARM) Science Team Meeting, Albuquerque, New Mexico, 22–26.Google Scholar
  21. Mace, G. G., 2004: Level 2 GEOPROF product process description and interface control document (v.3). Tech. Rep., CIRA, Colorado State University, 43 pp.Google Scholar
  22. McNally, A. P., 2009: The direct assimilation of cloud-affected satellite infrared radiances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 135(642), 1214–1229.CrossRefGoogle Scholar
  23. McNally, A. P., and P. D. Watts, 2003: A cloud detection algorithm for high-spectral-resolution infrared sounders. Quart. J. Roy. Meteor. Soc., 129, 3411–3423.CrossRefGoogle Scholar
  24. Menzel, W. P., and J. F. W. Purdom, 1994: Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites. Bull. Amer. Meteor. Soc., 75, 757–781.CrossRefGoogle Scholar
  25. Menzel, W. P., W. L. Smith, and T. R. Stewart, 1983: Improved cloud motion wind vector and altitude assignment using VAS. J. Climate Appl. Meteor., 22(3), 377–384.CrossRefGoogle Scholar
  26. Pavelin, E. G., S. J. English, and J. R. Eyre, 2008: The assimilation of cloud-affected infrared satellite radiances for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 134(632), 737–749.CrossRefGoogle Scholar
  27. Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41(2), 459–473.CrossRefGoogle Scholar
  28. Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72(1), 2–20.CrossRefGoogle Scholar
  29. Rossow, W. B., A. W. Walker, and L. C. Garder, 1993: Comparison of ISCCP and other cloud amounts. J. Climate, 6(12), 2394–2418.CrossRefGoogle Scholar
  30. Saunders, R., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125, 1407–1425.CrossRefGoogle Scholar
  31. Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570–575.CrossRefGoogle Scholar
  32. Smith, W. L., and R. Frey, 1990: On cloud altitude determinations from high resolution interferometer sounder (HIS) observations. J. Appl. Meteor., 29, 658–662.CrossRefGoogle Scholar
  33. Smith, W. L., H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, and N. Grodt, 1974: Nimbus-5 sounder data processing system. Part 1: Measurement characteristics and data reduction procedures, NOAA Tech. Memo. NESS 57, 99 pp.Google Scholar
  34. Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech Note, NCAR/TN-475+STR, Boulder, 113 pp.Google Scholar
  35. Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83(12), 1771–1790.CrossRefGoogle Scholar
  36. Wu, X., and W. L. Smith, 1992: Assimilation of ERBE data with a nonlinear programming technique to improve cloud-cover diagnostics. Mon. Wea. Rev., 120, 2009–2024.CrossRefGoogle Scholar
  37. Xu, D., Z. Liu, X.-Y. Huang, J. Min, and H. Wang, 2013: Impact of assimilating IASI radiance observations on forecasts of two tropical cyclones. Meteorology and Atmospheric Physics, 122, 1–18.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina
  2. 2.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations