Advances in Atmospheric Sciences

, Volume 32, Issue 1, pp 64–91 | Cite as

Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact

  • Yun QianEmail author
  • Teppei J. Yasunari
  • Sarah J. Doherty
  • Mark G. Flanner
  • William K. M. Lau
  • Jing Ming
  • Hailong Wang
  • Mo Wang
  • Stephen G. Warren
  • Rudong Zhang


Light absorbing particles (LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance (a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice (LAPSI) has been identified as one of major forcings affecting climate change, e.g. in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, and climatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.

Key words

light-absorbing aerosol snow ice albedo measurement climate modeling hydrological cycle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aamaas, B., C. Boggild, F. Stordal, T. Berntsen, K. Holmen, and J. Strom, 2011: Elemental carbon deposition to Svalbard snow from Norwegian settlements and long-range transport. Tellus B, 63(3), 340–351, doi: 10.1111/j.1600-0889.2011.00531.x.Google Scholar
  2. Adachi, K., and P. R. Buseck, 2011: Atmospheric tar balls from biomass burning in Mexico. J. Geophys. Res., 116, D05204, doi: 10.1029/2010JD015102.Google Scholar
  3. Adachi, K., S. H. Chung, and P. R. Buseck, 2010: Shapes of soot aerosol particles and implications for their effects on climate. J. Geophys. Res., 115, D15206, doi: 10.1029/2009JD012868.Google Scholar
  4. Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245(4923), 1227–1230.Google Scholar
  5. Aoki, T., and T. Y. Tanaka, 2008: Effect of the atmospheric aerosol depositions on snow albedo. Tenki, 55(7), 538–547. (in Japanese)Google Scholar
  6. Aoki, T., and T. Y. Tanaka, 2011: Light absorbing aerosols in snow and ice. Meteorological Research Note (Kisho-Kenkyu Note), No. 222, Yamazaki, K., and Y. Fujiyoshi, Eds., Meteorological Society of Japan, Tokyo, Japan, 95–106. (in Japanese)Google Scholar
  7. Aoki, T., T. Aoki, M. Fukabori, and A. Uchiyama, 1999: Numerical simulation of the atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system. J. Meteor. Soc. Japan, 77(2), 595–614.Google Scholar
  8. Aoki, T., T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, 2000: Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface. J. Geophys. Res., 105(D8), 10 219–10 236, doi: 10.1029/1999JD901122.Google Scholar
  9. Aoki, T., A. Hachikubo, and M. Hori, 2003: Effects of snow physical parameters on shortwave broadband albedos. J. Geophys. Res., 108, 4616, doi: 10.1029/2003JD003506.Google Scholar
  10. Aoki, T., H. Motoyoshi, Y. Kodama, T. J. Yasunari, K. Sugiura, and H. Kobayashi, 2006: Atmospheric aerosol deposition on snow surfaces and its effect on albedo. SOLA, 2, 13–16, doi: 10.2151/sola.2006-004.Google Scholar
  11. Aoki, T., K. Kuchiki, M. Niwano, Y. Kodama, M. Hosaka, and T. Tanaka, 2011: Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models. J. Geophys. Res., 116, doi: 10.1029/2010JD015507.Google Scholar
  12. Aoki, T., S. Matoba, S. Yamaguchi, T. Tanikawa, M. Niwano, K. Kuchiki, K. Adachi, J. Uetake, H. Motoyama, and M. Hori, 2014: Light-absorbing snow impurity concentrations measured on Northwest Greenland ice sheet in 2011 and 2012. Bull. Glaciol. Res., 32, 21–31, doi: 10.5331/bgr.32.21.Google Scholar
  13. Balkanski, Y., G. Myhre, M. Gauss, G. Rädel, E. J. Highwood, and K. P. Shine, 2010: Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation. Atmos. Chem. Phys., 10, 4477–4489, doi: 10.5194/acp-10-4477-2010.Google Scholar
  14. Barnett, T. P., J. Ritchie, J. Foat, and G. Stokes, 1998: On the space-time scales of the surface solar radiation field. J. Climate, 11(1), 88–96.Google Scholar
  15. Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066), 303–309.Google Scholar
  16. Bauer, S. E., and S. Menon, 2012: Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions. J. Geophys. Res., 117, D01206, doi: 10.1029/2011JD016816.Google Scholar
  17. Bauer, S. E., D. L. Wright, D. Koch, E. R. Lewis, R. McGraw, L.-S. Chang, S. E. Schwartz, and R. Ruedy, 2008: MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): An aerosol microphysical module for global atmospheric models. Atmos. Chem. Phys., 8, 6003–6035, doi: 10.5194/acp-8-6003-2008.Google Scholar
  18. Bauer, S. E., A. Bausch, L. Nazarenko, K. Tsigaridis, B. Xu, R. Edwards, M. Bisiaux, and J. McConnell, 2013: Historical and future black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 to 2100. J. Geophys. Res., 118, 7948–7961, doi: 10.1002/jgrd. 50612.Google Scholar
  19. Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687–720, doi: 10.5194/gmd-6-687-2013.Google Scholar
  20. Betts, A. K., and J. H. Ball, 1997: Albedo over the boreal forest. J. Geophys. Res., 102(D24), 28 901–28 909.Google Scholar
  21. Birch, M. E., and R. A. Cary, 1996: Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol., 25, 221–241.Google Scholar
  22. Bisiaux, M., R. Edwards, J. McConnell, M. Albert, H. Anschutz, T. Neumann, E. Isaksson, and J. Penner, 2012a: Variability of black carbon deposition to the East Antarctic Plateau, 1800–2000 AD. Atmos. Chem. Phys., 12(8), 3799–3808, doi: 10.5194/acp-12-3799-2012.Google Scholar
  23. Bisiaux, M., and Coauthors, 2012b: Changes in black carbon deposition to Antarctica from two high-resolution ice core records, 1850–2000 AD. Atmos. Chem. Phys, 12(9), 4107–4115, doi: 10.5194/acp-12-4107-2012.Google Scholar
  24. Bond, T. C., and R. W. Bergstrom, 2006: Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol., 40(1), 27–67, doi: 10.1080/02786820500421521.Google Scholar
  25. Bond, T. C., E. Bhardwaj, R. Dong, R. Jogani, S. K. Jung, C. Roden, D. G. Streets, and N. M. Trautmann, 2007: Historical emissions of black and organic carbon aerosol from energyrelated combustion, 1850–2000. Global Biogeochemical Cycles, 21(2), doi: 10.1029/2006gb002840.Google Scholar
  26. Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res., 118(11), 5380–5552, doi: 10.1002/jgrd.50171.Google Scholar
  27. Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 571–657.Google Scholar
  28. Brandt, R., S. Warren, and A. Clarke, 2011: A controlled snowmaking experiment testing the relation between black carbon content and reduction of snow albedo. J. Geophys. Res., 116, doi: 10.1029/2010JD015330.Google Scholar
  29. Cachier, H., and M. H. Pertuisot, 1994: Particulate carbon in Arctic ice. Analusis, 22(7), M34–M37.Google Scholar
  30. Cao, J., X. Tie, B. Xu, Z. Zhao, C. Zhu, G. Li, and S. Liu, 2010: Measuring and modeling black carbon (BC) contamination in the SE Tibetan Plateau. Journal of Atmospheric Chemistry, 67(1), 45–60, doi: 10.1007/s10874-011-9202-5.Google Scholar
  31. Cavalli, F., M. Viana, K. E. Yttri, J. Genberg, and J.-P. Putaud, 2010: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: The EUSAAR protocol. Atmos. Meas. Technol., 3(1), 79–89, doi: 10.5194/amt-3-79-2010.Google Scholar
  32. Cess, R. O., and Coauthors, 1991: Interpretation of snow-climate feedback as produced by 17 general circulation models. Science, 253(5022), 888–892.Google Scholar
  33. Chen, S. Y., J. P. Huang, C. Zhao, Y. Qian, L. R. Leung, and B. Yang, 2013: Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006. J. Geophys. Res., 118(2), 797–812, doi: 10.1002/Jgrd.50122.Google Scholar
  34. Chow, J. C., J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, and R. G. Purcell, 1993: The DRI thermal/optical reflectance carbon analysis system: Description, evaluation and applications in U.S. air quality studies. Atmos. Environ., 27A(8), 1185–1201, doi: 10.1016/0960-1686(93)90245-T.Google Scholar
  35. Chýlek, P., V. Srivastava, L. Cahenzli, R. G. Pinnick, R. L. Dod, T. Novakov, T. L. Cook, and B. D. Hinds, 1987: Aerosol and graphitic carbon content of snow. J. Geophys. Res., 92(D8), 9801–9809, doi: 10.1029/JD092iD08p09801.Google Scholar
  36. Chýlek, P., B. Johnson, P. A. Damiano, K. C. Taylor, and P. Clement, 1995: Biomass burning record and black carbon in the GISP2 Ice Core. Geophys. Res. Lett., 22(2), 89–92, doi: 10.1029/94GL02841.Google Scholar
  37. Chýlek, P., L. Kou, B. Johnson, F. Boudala, and G. Lesins, 1999: Black carbon concentrations in precipitation and near surface air in and near Halifax, Nova Scotia. Atmos. Environ., 33, 2269–2277, doi: 10.1016/S1352-2310(98)00154-X.Google Scholar
  38. Clarke, A. D., and K. J. Noone, 1985: Soot in the Arctic snowpack—A cause for perturbations in radiative transfer. Atmos. Environ., 19(12), 2045–2053, doi: 10.1016/0004-6981(85)90113-1.Google Scholar
  39. Cogley, J. G., J. S. Kargel, G. Kaser, and C. J. van der Veen, 2010: Tracking the source of glacier misinformation. Science, 327(5965), 522, doi: 10.1126/science.327.5965.522-a.Google Scholar
  40. Cohen, J., and D. Rind, 1991: The effect of snow cover on the climate. J. Climate, 4(7), 689–706.Google Scholar
  41. Collins, W. D., and Coauthors, 2006: The Community Climate System Model Version 3 (CCSM3). J. Climate, 19, 2122–2143, doi: 10.1175/JCLI3761.1.Google Scholar
  42. Conny, J. M., D. B. Klinedinst, S. A. Wight, and J. L. Paulsen, 2003: Optimizing thermal-optical methods for measuring atmospheric elemental (black) carbon: A response surface study. Aerosol Sci. Technol., 37(9), 703–723.Google Scholar
  43. Conway, H., A. Gades, and C. F. Raymond, 1996: Albedo of dirty snow during conditions of melt. Water Resources Research, 32(6), 1713–1718.Google Scholar
  44. Cooke, W. F., C. Liousse, H. Cachier, and J. Feichter, 1999: Construction of a 1×1 fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J. Geophys. Res., 104(D18), 22 137–22 162.Google Scholar
  45. Dang, C., and D. A. Hegg, 2014: Quantifying light absorption by organic carbon in western North American snow by serial chemical extractions. J. Geophys. Res., 119, 10 247–10 261.Google Scholar
  46. Davidson, C. I., S. Santhanam, R. C. Fortmann, and P. O. Marvin, 1985: Atmospheric transport and deposition of trace elements onto the Greenland ice sheet. Atmos. Environ., 19(12), 2065–2081.Google Scholar
  47. Doherty, S. J., S. G. Warren, T. C. Grenfell, A. D. Clarke, and R. E. Brandt, 2010: Light-absorbing impurities in Arctic snow. Atmos. Chem. Phys., 10(23), 11 647–11 680, doi: 10.5194/acp-10-11647-2010.Google Scholar
  48. Doherty, S. J., T. C. Grenfell, S. Forsström, D. L. Hegg, R. E. Brandt, and S. G. Warren, 2013: Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow. J. Geophys. Res., 118, 5553–5569, doi: 10.1002/jgrd.50235.Google Scholar
  49. Doherty, S. J., C. M. Bitz, and M. G. Flanner, 2014a: Biases in modeled surface snow BC mixing ratios in prescribed aerosol climate model runs. Atmos. Chem. Phys., 14, 11 697–11 709, doi: 10.5194/acp-14-11697-2014.Google Scholar
  50. Doherty, S. J., C. Dang, D. A. Hegg, R. Zhang, and S. G. Warren, 2014b: Black carbon and other light-absorbing particles in snow of central North America. J. Geophys. Res., doi: 10.1002/2014JD022350. (in press)Google Scholar
  51. Dou, T., C. Xiao, D. Shindell, J. Liu, K. Eleftheriadis, J. Ming, and D. Qin, 2012: The distribution of snow black carbon observed in the Arctic and compared to the GISS-PUCCINI model. Atmos. Chem. Phys., 12(17), 7995–8007, doi: 10.5194/acp-12-7995-2012.Google Scholar
  52. Flanner, M. G., and C. S. Zender, 2005: Snowpack radiative heating: Influence on Tibetan Plateau climate. Geophys. Res. Lett., 32(6), doi: 10.1029/2004gl022076.Google Scholar
  53. Flanner, M. G., and C. S. Zender, 2006: Linking snowpack microphysics and albedo evolution. J. Geophys. Res., 111(D12), 208, doi: 10.1029/2005JD006834.Google Scholar
  54. Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch, 2007: Present-day climate forcing and response from black carbon in snow. J. Geophys. Res., 112(D11), doi: 10.1029/2006JD008003.Google Scholar
  55. Flanner, M., C. Zender, P. Hess, N. Mahowald, T. Painter, V. Ramanathan, and P. Rasch, 2009: Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys, 9(7), 2481–2497, doi: 10.5194/acp-9-2481-2009.Google Scholar
  56. Flanner, M., X. Liu, C. Zhou, J. Penner, and C. Jiao, 2012: Enhanced solar energy absorption by internally-mixed black carbon in snow grains. Atmos. Chem. Phys., 12(10), 4699–4721, doi: 10.5194/acp-12-4699-2012.Google Scholar
  57. Forsström, S., J. Ström, C. A. Pedersen, E. Isaksson, and S. Gerland, 2009: Elemental carbon distribution in Svalbard snow. J. Geophys. Res., 114(D19), doi: 10.1029/2008JD011480.Google Scholar
  58. Forsström, S., and Coauthors, 2013: Elemental carbon measurements in European Arctic snow packs. J. Geophys. Res., 118(24), 13 614–13 627, doi: 10.1002/2013JD019886.Google Scholar
  59. Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 129–234.Google Scholar
  60. Fujita, K., 2007: Effect of dust event timing on glacier runoff: sensitivity analysis for a Tibetan glacier. Hydrological Processes, 21(21), 2892–2896.Google Scholar
  61. Fung, K., 1990: Particulate carbon speciation by MnO2 oxidation. Aerosol Sci. Technol., 12, 122–127.Google Scholar
  62. Gautam, R., N. C. Hsu, K. M. Lau, S. C. Tsay, and M. Kafatos, 2009: Enhanced pre-monsoon warming over the Himalayan-Gangetic region from 1979 to 2007. Geophys. Res. Lett., 36(7), doi: 10.1029/2009GL037641.Google Scholar
  63. Ganguly, D., P. J. Rasch, H. Wang, and J. H. Yoon, 2012: Climate response of the South Asian monsoon system to anthropogenic aerosols. J. Geophys. Res., 117(D13), doi: 10.1029/2012JD017508.Google Scholar
  64. Gautam, R., N. Hsu,W. Lau, and T. J. Yasunari, 2013: Satellite observations of desert dust-induced Himalayan snow darkening. Geophys. Res. Lett., 40(5), 988–993, doi: 10.1002/grl.50226.Google Scholar
  65. Gent, P. R., and Coauthors, 2011: The Community Climate System Model Version 4. J. Climate, 24, 4973–4991, doi: 10.1175/2011JCLI4083.1.Google Scholar
  66. Ginot, P., and Coauthors, 2014: A 10 year record of black carbon and dust from a Mera Peak ice core (Nepal): Variability and potential impact on melting of Himalayan glaciers. The Cryosphere, 8, 1479–1496, doi: 10.5194/tc-8-1479-2014.Google Scholar
  67. Goldenson, N., S. Doherty, C. Bitz, M. Holland, B. Light, and A. Conley, 2012: Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM. Atmos. Chem. Phys., 12(17), 7903–7920, doi: 10.5194/acp-12-7903-2012.Google Scholar
  68. Grenfell, T. C., D. K. Perovich, and J. A. Ogren, 1981: Spectral albedos of an alpine snowpack. Cold Reg. Sci. Technol., 4, 121–127.Google Scholar
  69. Grenfell, T. C., B. Light, and M. Sturm, 2002: Spatial distribution and radiative effects of soot in the snow and sea ice during the SHEBA experiment. J. Geophys. Res., 107(C10), SHE 7-1–SHE 7-7, doi: 10.1029/2000jc000414.Google Scholar
  70. Grenfell, T., S. Doherty, A. Clarke, and S. Warren, 2011: Light absorption from particulate impurities in snow and ice determined by spectrophotometric analysis of filters. Applied Optics, 50(14), 2037–2048.Google Scholar
  71. Hadley, O., and T. Kirchstetter, 2012: Black-carbon reduction of snow albedo. Nature Climate Change, 2(6), 437–440, doi: 10.1038/NCLIMATE1433.Google Scholar
  72. Hadley, O. L., C. E. Corrigan, and T. W. Kirchstetter, 2008: Modified thermal-optical analysis using spectral absorption selectivity to distinguish black carbon from pyrolized organic carbon. Environmental Science and Technology, 42(22), 8459–8464.Google Scholar
  73. Hadley, O., C. Corrigan, T. Kirchstetter, S. Cliff, and V. Ramanathan, 2010: Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat. Atmos. Chem. Phys., 10(15), 7505–7513, doi: 10.5194/acp-10-7505-2010.Google Scholar
  74. Hagler, G. S.W., M. H. Bergin, E. A. Smith, and J. E. Dibb, 2007a: A summer time series of particulate carbon in the air and snow at Summit, Greenland. J. Geophys. Res., 112, D21309, doi: 10.1029/2007JD008993.Google Scholar
  75. Hagler, G. S. W., M. H. Bergin, E. A. Smith, J. E. Dibb, C. Anderson, and E. J. Steig, 2007b: Particulate and water-soluble carbon measured in recent snow at Summit, Greenland. Geophys. Res. Lett., 34, L16505, doi: 10.1029/2007GL030110.Google Scholar
  76. Hansen, J., and L. Nazarenko, 2004: Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Sciences of the United States of America, 101(2), 423–428, doi: 10.1073/pnas.2237157100.Google Scholar
  77. Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102(D6), 6831–6864.Google Scholar
  78. Hansen, J., and Coauthors, 2007: Climate simulations for 1880-2003 with GISS model E. Climate Dyn., 29, 661–696, doi: 10.1007/s00382-007-0255-8.Google Scholar
  79. Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophy. Res., 110, D18104, doi: 10.1029/2005JD005776.Google Scholar
  80. Hauglustaine, D. A., F. Hourdin, L. Jourdain, M.-A. Filiberti, S. Walters, J.-F. Lamarque, and E. A. Holland, 2004: Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: Description and background tropospheric chemistry evaluation. J. Geophys. Res., 109, D04314, doi: 10.1029/2003JD003957.Google Scholar
  81. Hegg, D., S. Warren, T. Grenfell, S. Doherty, T. Larson, and A. Clarke, 2009: Source attribution of black carbon in arctic snow. Environmental Science & Technology, 43(11), 4016–4021, doi: 10.1021/es803623f.Google Scholar
  82. Hegg, D., S. Warren, T. Grenfell, S. Doherty, and A. Clarke, 2010: Sources of light-absorbing aerosol in arctic snow and their seasonal variation. Atmos. Chem. Phys., 10(22), 10923–10938, doi: 10.5194/acp-10-10923-2010.Google Scholar
  83. Higuchi, K., and A. Nagoshi, 1977: Effect of particulate matter in surface snow layers on the albedo of perennial snow patches. IAHS AISH Publication, 118, 95–97.Google Scholar
  84. Holland, M. M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke, 2012: Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. J. Climate, 25(5), 1413–1430, doi: 10.1175/Jcli-D-11-00078.1.Google Scholar
  85. Hosaka, M., D. Nohara, and A. Kitoh, 2005: Changes in snow cover and snow water equivalent due to global warming simulated by a 20km-mesh global atmospheric model. SOLA, 1, 93–96, doi: 10.2151/sola.2005-025.Google Scholar
  86. Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27(7–8), 787–813.Google Scholar
  87. Huang, J. P., Q. Fu, W. Zhang, X. Wang, R. D. Zhang, H. Ye, and S. Warren, 2011: Dust and black carbon in seasonal snow across northern China. Bull. Amer. Meteor. Soc., 92(2), 175–181, doi: 10.1175/2010BAMS3064.1.Google Scholar
  88. Ichoku, C., and L. Ellison, 2014: Global top-down smokeaerosol emissions estimation using satellite fire radiative power measurements. Atmos. Chem. Phys., 14, 6643–6667, doi: 10.5194/acp-14-6643-2014.Google Scholar
  89. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.Google Scholar
  90. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1 535 pp.Google Scholar
  91. Jacobson, M. Z., 2004: Climate response of fossil fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity. J. Geophys. Res., 109, D21201, doi: 10.1029/2004JD004945.Google Scholar
  92. Jacobson, M. Z., 2012: Investigating cloud absorption effects: Global absorption properties of black carbon, tar balls, and soil dust in clouds and aerosols. J. Geophys. Res., 117, D06205, doi: 10.1029/2011JD017218.Google Scholar
  93. Jiao, C., and Coauthors, 2014: An AeroCom assessment of black carbon in Arctic snow and sea ice. Atmos. Chem. Phys., 14, 2399–2417, doi: 10.5194/acp-14-2399-2014.Google Scholar
  94. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.Google Scholar
  95. Kaspari, S. D., M. Schwikowski, M. Gysel, M. G. Flanner, S. Kang, S. Hou, and P. A. Mayewski, 2011: Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860–2000 AD. Geophys. Res. Lett., 38, L04703, doi: 10.1029/2010GL046096.Google Scholar
  96. Kaspari, S., T. H. Painter, M. Gysel, S. M. Skiles, and M. Schwikowski, 2014: Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings. Atmos. Chem. Phys., 14, 8089–8103, doi: 10.5194/acp-14-8089-2014.Google Scholar
  97. Kinne, S., and Coauthors, 2006: An AeroCom initial assessment—optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 6, 1815–1834, doi: 10.5194/acp-6-1815-2006.Google Scholar
  98. Kistler, R., and Coauthors, 2001: The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROMand documentation. Bull. Amer. Meteor. Soc., 82, 247–267, doi: 10.1175/1520-0477 (2001)082<0247:TNNYRM>2.3.CO;2.Google Scholar
  99. Koch, D., 2001: Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM. J. Geophys. Res., 106, 20 311–20 332.Google Scholar
  100. Koch, D., T. C. Bond, D. Streets, N. Unger, and G. R. van der Werf, 2007: Global impacts of aerosols from particular source regions and sectors. J. Geophys. Res., 112, D02205, doi: 10.1029/2005JD007024.Google Scholar
  101. Koch, D., S. Menon, A. Del Genio, R. Ruedy, I. Alienov, and G. A. Schmidt, 2009: Distinguishing aerosol impacts on climate over the past century. J. Climate, 22(10), 2659–2677, doi: 10.1175/2008jcli2573.1.Google Scholar
  102. Kopacz, M., D. Mauzerall, J. Wang, E. Leibensperger, D. Henze, and K. Singh, 2011: Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau. Atmos. Chem. Phys., 11(6), 2837–2852, doi: 10.5194/acp-11-2837-2011.Google Scholar
  103. Krinner, G., and Coauthors, 2005: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles, 19, GB1015, doi: 10.1029/2003GB002199.Google Scholar
  104. Krinner, G., O. Boucher, and Y. Balkanski, 2006: Ice-free glacial northern Asia due to dust deposition on snow. Climate Dyn., 27(6), 613–625, doi: 10.1007/s00382-006-0159-z.Google Scholar
  105. Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 7017–7039, doi: 10.5194/acp-10-7017-2010.Google Scholar
  106. Lamarque, J.-F., and Coauthors, 2013: The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics. Geosci. Model Dev., 6, 179–206, doi: 10.5194/gmd-6-179-2013.Google Scholar
  107. Lau, K.-M., and K.-M. Kim, 2006: Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett., 33, L21810, doi: 10.1029/2006GL027546.Google Scholar
  108. Lau, W., M. Kim, K. Kim, and W. Lee, 2010: Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ. Res. Lett., 5(2), doi: 10.1088/1748-9326/5/2/025204.Google Scholar
  109. Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 3, M03001, doi: 10.1029/2011MS000045.Google Scholar
  110. Lawrence, D. M., K. W. Oleson, M. G. Flanner, C. G. Fletcher, P. J. Lawrence, S. Levis, S. C. Swenson, and G. B. Bonan, 2012: The CCSM4 land simulation, 1850-2005: Assessment of surface climate and new capabilities. J. Climate, 25, 2240–2260, doi: 10.1175/JCLI-D-11-00103.1.Google Scholar
  111. Lee, Y. H., and Coauthors, 2013: Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13, 2607–2634, doi: 10.5194/acp-13-2607-2013.Google Scholar
  112. Legrand, M., and Coauthors, 2007: Major 20th century changes of carbonaceous aerosol components (EC, WinOC, DOC, HULIS, carboxylic acids, and cellulose) derived from Alpine ice cores. J. Geophys. Res., 112(D23), doi: 10.1029/2006JD008080.Google Scholar
  113. Lim, S., X. Faïn, M. Zanatta, J. Cozic, J.-L. Jaffrezo, P. Ginot, and P. Laj, 2014: Refractory black carbon mass concentrations in snow and ice: method evaluation and inter-comparison with elemental carbon measurement. Atmos. Meas. Tech. Discuss., 7, 3549–3589, doi: 10.5194/amtd-7-3549-2014.Google Scholar
  114. Lin, C. I., M. Baker, and R. J. Charlson, 1973: Absorption coefficient of atmospheric aerosol: A method for measurement. Applied Optics, 12(6), 1356–1363.Google Scholar
  115. Lund, M. T., and T. Berntsen, 2012: Parameterization of black carbon aging in the OsloCTM2 and implications for regional transport to the Arctic. Atmos. Chem. Phys., 12, 6999–7014, doi: 10.5194/acp-12-6999-2012.Google Scholar
  116. Manabe, S., and T. B. Terpstra, 1974: The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci., 31(1), 3–42.Google Scholar
  117. McConnell, J. R., A. J. Aristarain, J. R. Banta, P. R. Edwards, and J. C. Simoes, 2007a: 20th-Century doubling in dust archived in an Antarctic Peninsula ice core parallels climate change and desertification in South America. Proceedings of the National Academy of Sciences of the United States of America, 104(14), 5743–5748, doi: 10.1073/pnas.0607657104.Google Scholar
  118. McConnell, J., and Coauthors, 2007b: 20th-century industrial black carbon emissions altered Arctic climate forcing. Science, 317(5843), 1381–1384, doi: 10.1126/science.1144856.Google Scholar
  119. McConnell, J. R., 2010: New Directions: Historical black carbon and other ice core aerosol records in the Arctic for GCM evaluation. Atmos. Environ., 44(21–22), 2665–2666, doi: 10.1016/j.atmosenv.2010.04.004.Google Scholar
  120. McConnell, J. R., and R. Edwards, 2008: Coal burning leaves toxic heavy metal legacy in the Arctic. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12 140–12 144, doi: 10.1073/pnas.0803564105.Google Scholar
  121. Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon, et al., Eds., Cambridge University Press, 747–845.Google Scholar
  122. Ménégoz, M., G. Krinner, Y. Balkanski, A. Cozic, O. Boucher, and P. Ciais, 2013: Boreal and temperate snow cover variations induced by black carbon emissions in the middle of the 21st century. The Cryosphere, 7(2), 537–554, doi: 10.5194/tc-7-537-2013.Google Scholar
  123. Ménégoz, M., and Coauthors, 2014: Snow cover sensitivity to black carbon deposition in the Himalayas: from atmospheric and ice core measurements to regional climate simulations. Atmos. Chem. Phys., 14, 4237–4249, doi: 10.5194/acp-14-4237-2014.Google Scholar
  124. Menon, S., D. Koch, G. Beig, S. Sahu, J. Fasullo, and D. Orlikowski, 2010: Black carbon aerosols and the third polar ice cap. Atmos. Chem. Phys., 10(10), 4559–4571, doi: 10.5194/acp-10-4559-2010.Google Scholar
  125. Ming, J., H. Cachier, C. Xiao, D. Qin, S. Kang, S. Hou, and J. Xu, 2008: Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmos. Chem. Phys., 8(5), 1343–1352, doi: 10.5194/acp-8-1343-2008.Google Scholar
  126. Ming, J., C. Xiao, H. Cachier, D. Qin, X. Qin, Z. Li, and J. Pu, 2009: Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmospheric Research, 92(1), 114–123, doi: 10.1016/j.atmosres.2008.09.007.Google Scholar
  127. Ming, J., P. Wang, S. Zhao, and P. Chen, 2013a: Disturbance of light-absorbing aerosols on the albedo in a winter snowpack of Central Tibet. Journal of Environmental Sciences-China, 25(8), 1601–1607, doi: 10.1016/S1001-0742(12)60220-4.Google Scholar
  128. Ming, J., C. Xiao, Z. Du, and X. Yang, 2013b: An overview of black carbon deposition in High Asia glaciers and its impacts on radiation balance. Advances in Water Resources, 55, 80–87, doi: 10.1016/j.advwatres.2012.05.015.Google Scholar
  129. Moosmüller, H., R. K. Chakrabarty, and W. P. Arnott, 2009: Aerosol light absorption and its measurement: A review. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(11), 844–878, doi: 10.1016/j.jqsrt.2009.02.035.Google Scholar
  130. Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 659–740.Google Scholar
  131. Moteki, N., and Y. Kondo, 2010: Dependence of laser-induced incandescence on physical properties of black carbon aerosols: Measurements and theoretical interpretation. Aerosol Sci. Technol., 44(8), 663–675.Google Scholar
  132. Moteki, N., and Coauthors, 2007: Evolution of mixing state of black carbon particles: Aircraft measurements over the western Pacific in March 2004. Geophys. Res. Lett., 34, L11803, doi: 10.1029/2006GL028943.Google Scholar
  133. National Research Council, 2012: Himalayan Glaciers: Climate Change, Water Resources, and Water Security. The National Academies Press, Washington, DC, 143 pp.Google Scholar
  134. Neale, R. B., and Coauthors, 2010: Description of the NCAR community atmosphere model (CAM5), 268 pp., NCAR Technical Note, NCAR/TN-486+STR, National Center for Atmospheric Research, Boulder, CO. [Available online at]Google Scholar
  135. Nitta, T., and Coauthors, 2014: Representing variability in subgrid snow cover and snow depth in a global land model: Offline validation. J. Climate, 27(9), 3318–3330, doi: 10.1175/JCLID-13-00310.1.Google Scholar
  136. Niwano, M., T. Aoki, K. Kuchiki, M. Hosaka, and Y. Kodama, 2012: Snow Metamorphism and Albedo Process (SMAP) model for climate studies: Model validation using meteorological and snow impurity data measured at Sapporo, Japan. J. Geophys. Res., 117, doi: 10.1029/2011JF002239.Google Scholar
  137. Novakov, T., V. Ramanathan, J. E. Hansen, T. W. Kirchstetter, M. Sato, J. E. Sinton, and J. A. Sathaye, 2003: Large historical changes of fossil-fuel black carbon aerosols. Geophys. Res. Lett., 30(6), doi: 10.1029/2002GL016345.Google Scholar
  138. Ohata, S., N. Moteki, J. Schwarz, D. Fahey, and Y. Kondo, 2013: Evaluation of a method to measure black carbon particles suspended in rainwater and snow samples. Aerosol Sci. Technol., 47(10), 1073–1082, doi: 10.1080/02786826.2013.824067.Google Scholar
  139. Oleson, K.W., and Coauthors, 2010: Technical Description of version 4.0 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-478+STR, doi: 10.5065/D6FB50WZ. [Available online at]Google Scholar
  140. Onuma, T., C. Nakamura, K. Kobayashi, and K. Takahashi, 1967: The studies on the methods of promoting the melting of snow on a farm, Part I. Seppyo, 29(1), 10–25. (in Japanese with English captions for figures and tables)[Available online at:]Google Scholar
  141. Painter, T. H., A. P. Barrett, C. C. Landry, J. C. Neff, M. P. Cassidy, C. R. Lawrence, K. E. McBride, and G. L. Farmer, 2007: Impact of disturbed desert soils on duration of mountain snow cover. Geophys. Res. Lett., 34(12), 502, doi: 10.1029/2007GL030284.Google Scholar
  142. Painter, T. H., J. S. Deems, J. Belnap, A. F. Hamlet, C. C. Landry, and B. Udall, 2010: Response of Colorado River runoff to dust radiative forcing in snow. Proceedings of the National Academy of Sciences of the United States of America, 107(40), 17 125–17 130, doi: 10.1073/Pnas.0913139107.Google Scholar
  143. Painter, T. H., A. C. Bryant, and S. M. Skiles, 2012a: Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data. Geophys. Res. Lett., 39, doi: 10.1029/2012gl052457.Google Scholar
  144. Painter, T. H., S. M. Skiles, J. S. Deems, A. C. Bryant, and C. C. Landry, 2012b: Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations. Water Resources Research, 48, doi: 10.1029/2012wr011985.Google Scholar
  145. Painter, T., M. Flanner, G. Kaser, B. Marzeion, R. VanCuren, and W. Abdalati, 2013a:, End of the Little Ice Age in the Alps forced by industrial black carbon, Proceedings of the National Academy of Sciences of the United States of America, 110(38), 15 216–15 221, doi: 10.1073/pnas.1302570110.Google Scholar
  146. Painter, T., F. Seidel, A. Bryant, S. Skiles, and K. Rittger, 2013b: Imaging spectroscopy of albedo and radiative forcing by light-absorbing impurities in mountain snow. J. Geophys. Res., 118(17), 9511–9523, doi: 10.1002/jgrd.50520.Google Scholar
  147. Prasad, A. K., K. H. S. Yang, H. M. El-Askary, and M. Kafatos, 2009: Melting of major Glaciers in the western Himalayas: Evidence of climatic changes from long term MSU derived tropospheric temperature trend 1979–2008. Annales Geophysicae, 27(12), 4505–4519.Google Scholar
  148. Petrenko, M., R. Kahn, M. Chin, A. Soja, T. Kucsera, and Harshvardhan, 2012: The use of satellite-measured aerosol optical depth to constrain biomass burning emissions source strength in the global model GOCART. J. Geophys. Res., 117, D18212, doi: 10.1029/2012JD017870.Google Scholar
  149. Petzold, A., and Coauthors, 2013: Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys., 13, 8365–8379, doi: 10.5194/acp-13-8365-2013.Google Scholar
  150. Pósfai, M., A. Gelencsér, R. Simonics, K. Arató, J. Li, P. V. Hobbs, and P. R. Buseck, 2004: Atmospheric tar balls: Particles from biomass and biofuel burning. J. Geophys. Res., 109, D06213, doi: 10.1029/2003JD004169.Google Scholar
  151. Qian, Y., W. I. Gustafson, L. R. Leung, and S. J. Ghan, 2009: Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based onWeather Research and Forecasting chemistry and regional climate simulations. J. Geophys. Res., 114(D03), 108, doi: 10.1029/2008 JD011039.Google Scholar
  152. Qian, Y., M. Flanner, L. Leung, and W. Wang, 2011: Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos. Chem. Phys., 11(5), 1929–1948, doi: 10.5194/acp-11-1929-2011.Google Scholar
  153. Qian, Y., H. Wang, R. Zhang, M. G. Flanner, and P. J. Rasch, 2014: A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China. Environ. Res. Lett., 9, 064001, doi: 10.1088/1748-9326/9/6/064001.Google Scholar
  154. Qin, D. H., S. Y. Liu, and P. J. Li, 2006: Snow cover distribution, variability, and response to climate change in western China. J. Climate, 19(9), 1820–1833.Google Scholar
  155. Qu, B., and Coauthors, 2014: The decreasing albedo of Zhadang glacier on western Nyainqentanglha and the role of lightabsorbing impurities. Atmos. Chem. Phys. Discuss., 14, 13109–13131.Google Scholar
  156. Qu, X., and A. Hall, 2006: Assessing snow albedo feedback in simulated climate change. J. Climate, 19(11), 2617–2630.Google Scholar
  157. Ramanathan, V. C. P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294(5549), 2119–2124.Google Scholar
  158. Ramanathan, V., and Coauthors, 2007: Atmospheric brown clouds: Hemispherical and regional variations in long — range transport, absorption, and radiative forcing. J. Geophys. Res. (1984–2012), 112(D22), doi: 10.1029/2006JD008124.Google Scholar
  159. Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nature Geoscience, 1(4), 221–227, doi: 10.1038/ngeo156.Google Scholar
  160. Randall, D. O., and Coauthors, 1994: Analysis of snow feedbacks in 14 general circulation models. J. Geophys. Res., 99(D10), 20 757–20 771.Google Scholar
  161. Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of Versions 5.0.1, 5.1.0, and 5.2.0. NASA Technical Report Series on Global Modeling and Data Assimilation, Vol. 27, NASA/TM-2008-104606, National Aeronautics and Space Administration. [Available online at]
  162. Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era retrospective analysis for research and applications. J. Climate, 24, 3624–3648.Google Scholar
  163. Rypdal, K., N. Rive, T. K. Berntsen, Z. Klimont, T. K. Mideksa, G. Myhre, and R. B. Skeie, 2009: Costs and global impacts of black carbon abatement strategies. Tellus B, 61, 625–641. doi: 10.1111/j.1600-0889.2009.00430.x.Google Scholar
  164. Schulz, M., and Coauthors, 2006: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos. Chem. Phys., 6, 5225–5246, doi: 10.5194/acp-6-5225-2006.Google Scholar
  165. Schulz, M., Chin, M., and S. Kinne, 2009: The Aerosol Model Comparison Project, AeroCom, Phase II: Clearing up diversity. IGAC Newsletter, 41, 2–11. [Available online at]Google Scholar
  166. Schmid, H., and Coauthors, 2001: Results of the “carbon conference” international aerosol carbon round robin test stage I. Atmos. Environ., 35, 2111–2121.Google Scholar
  167. Schwarz, J. P., and Coauthors, 2006: Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J. Geophys. Res., 111(D16), 207, doi: 10.1029/2006JD007076.Google Scholar
  168. Schwarz, J. P., and Coauthors, 2008: Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. Geophys. Res. Lett., 35(13), 810, doi: 10.1029/2008GL033968.Google Scholar
  169. Schwarz, J., S. Doherty, F. Li, S. Ruggiero, C. Tanner, A. Perring, R. Gao, and D. Fahey, 2012: Assessing Single Particle Soot Photometer and Integrating Sphere/Integrating Sandwich Spectrophotometer measurement techniques for quantifying black carbon concentration in snow. Atmospheric Measurement Techniques, 5(11), 2581–2592, doi: 10.5194/amt-5-2581-2012.Google Scholar
  170. Schwarz, J. P., R. S. Gao, A. E. Perring, J. R. Spackman, and D. W. Fahey, 2013: Black carbon aerosol size in snow. Scientific Reports, 3, doi: 10.1038/srep01356.Google Scholar
  171. Sharma, S., M. Ishizawa, D. Chan, D. Lavoue, E. Andrews, K. Eleftheriadis, and S. Maksyutov, 2013: 16-year simulation of Arctic black carbon: Transport, source contribution, and sensitivity analysis on deposition. J. Geophys. Res., 118(2), 943–964, doi: 10.1029/2012JD017774.Google Scholar
  172. Shindell, D., and G. Faluvegi, 2009: Climate response to regional radiative forcing during the twentieth century. Nat. Geosci., 2(4), 294–300, doi: 10.1038/Ngeo473.Google Scholar
  173. Skeie, R., T. Berntsen, G. Myhre, C. Pedersen, J. Strom, S. Gerland, and J. Ogren, 2011: Black carbon in the atmosphere and snow, from pre-industrial times until present. Atmos. Chem. Phys., 11(14), 6809–6836, doi: 10.5194/acp-11-6809-2011.Google Scholar
  174. Skiles, S, M, T, H, Painter, J. S. Deems, A. C. Bryant, and C. C. Landry, 2012: Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates. Water Resources Research, 48, doi: 10.1029/2012WR011986.Google Scholar
  175. Sterle, K., J. McConnell, J. Dozier, R. Edwards, and M. Flanner, 2013: Retention and radiative forcing of black carbon in eastern Sierra Nevada snow. Cryosphere, 7(1), 365–374, doi: 10.5194/tc-7-365-2013.Google Scholar
  176. Stibal, M., M. Šabacká, and J. Žárský, 2012: Biological processes on glacier and ice sheet surfaces. Nature Geosci., 5, 771–774, doi: 10.1038/ngeo1611.Google Scholar
  177. Subramanian, R., A. Y. Khlystov, and A. L. Robinson, 2006: Effect of peak inert-mode temperature on elemental carbon measured using thermal-optical analysis. Aerosol Sci. Technol., 40(10), 763–780, doi: 10.1080/02786820600714403.Google Scholar
  178. Szopa, S., and Coauthors, 2013: Aerosol and Ozone changes as forcing for climate evolution between 1850 and 2100. Climate Dyn., 40(9-10), 2223–2250, doi: 10.1007/s00382-012-1408-y.Google Scholar
  179. Takata, K., S. Emori, and T. Watanabe, 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global and Planetary Change, 38(1–2), 209–222, doi: 10.1016/S0921-8181(03)00030-4.Google Scholar
  180. Takeuchi, N., 2009: Temporal and spatial variations in spectral reflectance and characteristics of surface dust on Gulkana glacier, Alaska Range. J. Glaciol., 55(192), 701–709.Google Scholar
  181. Takeuchi, N., S. Kohshima, and K. Seko, 2001: Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: A granular algal mat growing on the glacier. Arctic Antarctic and Alpine Research, 33(2), 115–122.Google Scholar
  182. Tanaka, T. Y., K. Orito, T. T. Sekiyama, K. Shibata, M. Chiba, and H. Tanaka, 2003: MASINGAR, a global tropospheric aerosol chemical transport model coupled with MRI/JMA98GCM: Model description, Pap. Meteor. Geophys., 53(4), 119–138, doi: 10.2467/mripapers.53.119.Google Scholar
  183. Tanaka, T. Y., T. Aoki, H. Takahashi, K. Shibata, A. Uchiyama, and M. Mikami, 2007: Study of the sensitivity optical properties of mineral dust to the direct aerosol radiative perturbation using a global aerosol transport model. SOLA, 3, 33–36, doi: 10.2151/sola.2007-009.Google Scholar
  184. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi: 10.1175/BAMS-D-11-00094.1.Google Scholar
  185. Thevenon, F., F. S. Anselmetti, S. M. Bernasconi, and M. Schwikowski, 2009: Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. J. Geophys. Res., 114, D17102, doi: 10.1029/2008JD011490.Google Scholar
  186. Thomas, G., and P. R. Rowntree, 1992: The boreal forests and climate. Quart. J. Roy. Meteor. Soc., 118(505), 469–497.Google Scholar
  187. Textor, C., and Coauthors, 2006: Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys., 6, 1777–1813, doi: 10.5194/acp-6-1777-2006.Google Scholar
  188. Torres, A., T. C. Bond, C. M. B. Lehmann, R. Subramanian, and O. L. Hadley, 2013: Measuring organic carbon and black carbon in rainwater: Evaluation of methods. Aerosol Sci. Technol, 48, 239–250, doi: 10.1080/02786826.2013.868596.Google Scholar
  189. Twomey, S. A., M. Piepgrass, and T. L. Wolfe, 1984: An assessment of the impact of pollution on global cloud albedo. Tellus B, 36(5), 356–366.Google Scholar
  190. van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, P. S. Kasibhatla, and A. F. Arellano Jr., 2006: Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys., 6, 3423–3441, doi: 10.5194/acp-6-3423-2006.Google Scholar
  191. van der Werf, G. R., and Coauthors, 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmos. Chem. Phys., 10, 11707–11735, doi: 10.5194/acp-10-11707-2010.Google Scholar
  192. Vertenstein, M., T. Craig, A. Middleton, D. Feddema, and C. Fischer, cited 2010: CCSM4.0 User’s Guide, [Available online at] (last access: September 2014).Google Scholar
  193. Wagnon, P., and Coauthors, 2013: Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007. The Cryosphere, 7, 1769–1786, doi: 10.5194/tc-7-1769-2013.Google Scholar
  194. Walland, D. J., and I. Simmonds, 1996: Modelled atmospheric response to changes in Northern Hemisphere snow cover. Climate Dyn., 13(1), 25–34.Google Scholar
  195. Wang, B., Q. Bao, B. Hoskins, G. X. Wu, and Y. M. Liu, 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35(14), doi: 10.1029/2008GL034330.Google Scholar
  196. Wang, H., and Coauthors, 2013a: Sensitivity of remote aerosol distributions to representation of cloud-aerosol interactions in a global climate model. Geos. Model Dev., 6(3), 765–782, doi: 10.5194/gmd-6-765-2013.Google Scholar
  197. Wang, H., P. J. Rasch, R. C. Easter, B. Singh, R. Zhang, P.-L. Ma, Y. Qian, S. Ghan, and N. Beagley, 2014a: Using an explicit emission tagging method in global modeling of sourcereceptor relationships for black carbon in the Arctic: Variations, Sources and Transport pathways. J. Geophys. Res., 119, doi: 10.1002/2014JD022297. (in press)Google Scholar
  198. Wang, M., and Coauthors, 2014b: Carbonaceous aerosols recorded in a Southeastern Tibetan glacier: variations, sources and radiative forcing. Atmos. Chem. Phys. Discuss., 14, 19 719–19 746, doi: 10.5194/acpd-14-19719-2014.Google Scholar
  199. Wang, Q., and Coauthors, 2011a: Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winterspring: implications for radiative forcing. Atmos. Chem. Phys., 11, 12 453–12 473, doi: 10.5194/acp-11-12453-2011.Google Scholar
  200. Wang, X., S. J. Doherty, and J. P. Huang, 2013b: Black carbon and other light-absorbing impurities in snow across Northern China. J. Geophys. Res., 118, 1471–1492, doi: 10.1029/2012JD018291.Google Scholar
  201. Wang, Z., H. Zhang, and X. Shen, 2011b: Radiative Forcing and Climate Response Due to Black Carbon in Snow and Ice. Adv. Atmos. Sci., 28(6), 1336–1344, doi: 10.1007/s00376-011-0117-5.Google Scholar
  202. Warren, S. G., 2013: Can black carbon in snow be detected by remote sensing? J. Geophys. Res., 118(2), 779–786, doi: 10.1029/2012JD018476.Google Scholar
  203. Warren, S. G., and W. J. Wiscombe, 1980: A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci., 37(12), 2734–2745.Google Scholar
  204. Warren, S. G., and A. D. Clarke, 1990: Soot in the atmosphere and snow surface of Antarctica. J. Geophys. Res., 95(D2), 1811–1816.Google Scholar
  205. Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 6312–6335, doi: 10.1175/2010JCLI 3679.1.Google Scholar
  206. Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845–872, doi: 10.5194/gmd-4-845-2011.Google Scholar
  207. Watson, J. G., J. C. Chow, and L.-W. A. Chen, 2005: Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol and Air Quality Research, 5(1), 65–102.Google Scholar
  208. Wendl, I. A., and Coauthors, 2014: Optimized method for black carbon analysis in ice and snow using the Single Particle Soot Photometer. Atmospheric Measurement Techniques Discussions, 7, 3075–3111.Google Scholar
  209. Wu, G., and Y. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126(4), 913–927.Google Scholar
  210. Wu, T.W., and Z. A. Qian, 2003: The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation. J. Climate, 16(12), 2038–2051.Google Scholar
  211. Xu, B., T. Yao, X. Liu, and N. Wang, 2006: Elemental and organic carbon measurements with a two-step heating gas chromatography system in snow samples from the Tibetan Plateau. Ann. Glaciol., 43, 257–262, doi: 10.3189/172756406781812122.Google Scholar
  212. Xu, B. Q., and Coauthors, 2009a: Black soot and the survival of Tibetan glaciers. Proceedings of the National Academy of Sciences of the United States of America, 106(52), 22 114–22 118, doi: 10.1073/pnas.0910444106.Google Scholar
  213. Xu, B. Q., M. Wang, D. R. Joswiak, J. J. Cao, T. D. Yao, G. J. Wu, W. Yang, and H. B. Zhao, 2009b: Deposition of anthropogenic aerosols in a southeastern Tibetan glacier. J. Geophys. Res., 114, doi: 10.1029/2008JD011510.Google Scholar
  214. Xu, B. Q., J. J. Cao, D. R. Joswiak, X. Q. Liu, H. B. Zhao, and J. Q. He, 2012: Post-depositional enrichment of black soot in snow-pack and accelerated melting of Tibetan glaciers. Environ. Res. Lett., 7(1), doi: 10.1088/1748-9326/7/1/014022.Google Scholar
  215. Yanai, M., C. Li, and Z. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70(1B), 319–351.Google Scholar
  216. Yang, Z.-L., R. E. Dickinson, A. Robock, and K. Ya Vinnikov, 1997: Validation of the snow submodel of the biosphere-atmosphere transfer scheme with Russian snow cover and meteorological observational data. J. Climate, 10, 353–373, doi: 10.1175/1520-0442(1997)010<0353:VOTSSO>2.0.CO;2.Google Scholar
  217. Yasunari, T. J., and Coauthors, 2010: Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory—Pyramid data and snow albedo changes over Himalayan glaciers. Atmos. Chem. Phys., 10, 6603–6615, doi: 10.5194/acp-10-6603-2010.Google Scholar
  218. Yasunari, T. J., R. D. Koster, K.-M. Lau, T. Aoki, Y. C. Sud, T. Yamazaki, H. Motoyoshi, and Y. Kodama, 2011: Influence of dust and black carbon on the snow albedo in the NASA Goddard Earth Observing System version 5 land surface model. J. Geophys. Res., 116, D02210, doi: 10.1029/2010JD014861.Google Scholar
  219. Yasunari, T. J., and Coauthors, 2013: Estimated range of black carbon dry deposition and the related snow albedo reduction over Himalayan glaciers during dry pre-monsoon periods. Atmos. Environ., 78, 259–267, doi: 10.1016/j.atmosenv.2012.03.031.Google Scholar
  220. Yasunari, T. J., and Coauthors, 2014: The GOddard SnoW Impurity Module (GOSWIM) for the NASA GEOS-5 Earth System Model: Preliminary comparisons with observations in Sapporo, Japan. SOLA, 10, 50–56, doi: 10.2151/sola.2014-011.Google Scholar
  221. Yukimoto, S., and Coauthors, 2011: Meteorological Research Institute-Earth System Model Version 1 (MRI-ESM1)—Model Description. Technical Reports of the Meteorological Research Institute, No. 64, 96 pp. [Available online at:]Google Scholar
  222. Yukimoto, S., and Coauthors, 2012: A new global climate model of the meteorological research institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 23–64, doi: 10.2151/jmsj.2012-A02.Google Scholar
  223. Ye, H., R. D. Zhang, J. S. Shi, J. P. Huang, S. G. Warren, and Q. Fu, 2012: Black carbon in seasonal snow across northern Xinjiang in northwestern China. Environmental Research Letters, 7(4), doi: 10.1088/1748-9326/7/4/044002.Google Scholar
  224. Yeh, T.-C., and Coauthors, 1979: Meteorology of Qinhai-Xizhang (Tibetan) Plateau. Science Press, Beijing, 300 pp, (in Chinese).Google Scholar
  225. Zeng, Q., M. Cao, X. Feng, F. Liang, X. Chen, and W. Sheng, 1984: A study of spectral reflection characteristics for snow, ice and water in the north of China. Vol. 145, Hydrological Applications of Remote Sensing and Remote Data Transmission, B. E. Goodison, Ed., IAHS, Wallingford, UK, 451–462.Google Scholar
  226. Zhang, R., D. Hegg, J. Huang, and Q. Fu, 2013: Source attribution of insoluble light-absorbing particles in seasonal snow across northern China. Atmos. Chem. Phys., 13(12), 6091–6099, doi: 10.5194/acp-13-6091-2013.Google Scholar
  227. Zhao, C., and Coauthors, 2014: Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements. Atmos. Chem. Phys., 14, 11 475–11 491, doi: 10.5194/acp-14-11475-2014.Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yun Qian
    • 1
    Email author
  • Teppei J. Yasunari
    • 2
    • 3
  • Sarah J. Doherty
    • 4
  • Mark G. Flanner
    • 5
  • William K. M. Lau
    • 6
    • 7
  • Jing Ming
    • 7
  • Hailong Wang
    • 1
  • Mo Wang
    • 8
    • 1
  • Stephen G. Warren
    • 4
  • Rudong Zhang
    • 9
    • 1
  1. 1.Atmospheric Sciences and Global Change DivisionPacific Northwest National LaboratoryRichlandUSA
  2. 2.Goddard Earth Sciences Technology and ResearchUniversities Space Research AssociationColumbiaUSA
  3. 3.NASA Goddard Space Flight CenterGreenbeltUSA
  4. 4.Department of Atmospheric SciencesUniversity of WashingtonSeattleUSA
  5. 5.Department of Atmospheric SciencesUniversity of MichiganAnn ArborUSA
  6. 6.Earth System Science Interdisciplinary CenterUniversity of MarylandCollege ParkUSA
  7. 7.Earth Science DivisionNASA Goddard Space Flight CenterGreenbeltUSA
  8. 8.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  9. 9.College of Atmospheric SciencesLanzhou UniversityLanzhouChina

Personalised recommendations