Advertisement

Advances in Atmospheric Sciences

, Volume 31, Issue 5, pp 1101–1112 | Cite as

Carbon dioxide concentration and flux in an urban residential area in Seoul, Korea

  • Moon-Soo Park
  • Seung Jin Joo
  • Soon-Ung Park
Article

Abstract

The carbon dioxide (CO2) concentrations and fluxes measured at a height of 17.5 m above the ground by a sonic anemometer and an open-path gas analyzer at an urban residential site in Seoul, Korea from February 2011 to January 2012 were analyzed. The annual mean CO2 concentration was found to be 750 mg m−3, with a maximum monthly mean concentration of 827 mg m−3 in January and a minimum value of 679 mg m−3 in August. Meanwhile, the annual mean CO2 flux was found to be 0.45 mg m−2 s−1, with a maximum monthly mean flux of 0.91 mg m−2 s−1 in January and a minimum value of 0.19 mg m−2 s−1 in June. The hourly mean CO2 concentration was found to show a significant diurnal variation; a maximum at 0700–0900 LST and a minimum at 1400–1600 LST, with a large diurnal range in winter and a small one in summer, mainly caused by diurnal changes in mixing height, CO2 flux, and surface complexity. The hourly mean CO2 flux was also found to show a significant diurnal variation, but it showed two maxima at 0700–0900 LST and 2100–2400 LST, and two minima at 1100–1500 LST and 0300–0500 LST, mainly caused by a diurnal pattern in CO2 emissions and sinks from road traffic, domestic heating and cooking by liquefied natural gas use, and the different horizontal distribution of CO2 sources and sinks near the site. Differential advection with respect to wind direction was also found to be a cause of diurnal variations in both the CO2 concentration and flux.

Key words

CO2 concentration CO2 flux liquefied natural gas (LNG) Seoul urban residential area 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arya, S. P., 1981: Parameterizing the height of the stable atmospheric boundary layer. J. Appl. Meteor., 20, 1192–1202.CrossRefGoogle Scholar
  2. Arya, S. P., 1999: Air Pollution Meteorology and Dispersion. Oxford University Press, 310 pp.Google Scholar
  3. Aubinet, M., T. Vesala, and D. Papale, 2012: Eddy Covariance-A Practical Guide to Measurement and Data Analysis. Springer, 438 pp.Google Scholar
  4. Bergeron, O., and I. B. Strachan, 2011: CO2 sources and sinks in urban and suburban areas of a northern mid-latitude city. Atmos. Environ., 45, 1564–1573.CrossRefGoogle Scholar
  5. Büns, C., and W. Kuttler, 2012: Path-integrated measurements of carbon dioxide in the urban canopy layer. Atmos. Environ., 46, 237–247.CrossRefGoogle Scholar
  6. Chung, U., K. J. Lee, and B. W. Lee, 2007: Preliminary report of observed urban-rural gradient of carbon dioxide concentration across Seoul, Suwon, and Inchoen in South Korea. Korean Journal of Agricultural and Forest Meteorology, 9(4), 268–276.CrossRefGoogle Scholar
  7. Clark-Thorne, S. T., and C. J. Yapp, 2003: Stable carbon isotope constraints on mixing and mass balance of CO2 in an urban atmosphere: Dallas metropolitan area, Texas, USA. Applied Geochemistry, 18, 75–95.CrossRefGoogle Scholar
  8. Coutts, A. M., J. Beringer, and N. J. Tapper, 2007: Characteristics influencing the variability of urban CO2 fluxes in Melbourne, Australia. Atmos. Environ., 41, 51–62.CrossRefGoogle Scholar
  9. Davenport, A. G., S. B. Grimmond, T. R. Oke, and J. Wieringa, 2000: Estimating the roughness of cities and sheltered country. Preprints, 12th Conference on Applied Climatology, Asheville, NC, American Meteorological Society, 96–99.Google Scholar
  10. Day, T. A., P. Gober, F. S. Xiong, and E. A. Wentz, 2002: Temporal patterns in near-surface CO2 concentrations over contrasting vegetation types in the Phoenix metropolitan area. Agricultural and Forest Meteorology, 110, 229–245.CrossRefGoogle Scholar
  11. Dettinger, M. D., and M. Ghil, 1998: Seasonal and interannual variations of atmospheric CO2 and climate. Tellus, 50, 1–24.CrossRefGoogle Scholar
  12. Florkowski, T., A. Korus, J. Miroslaw, J. Necki, R. Neubert, M. Schimdt, and M. Zimnoch, 1998: Isotopic composition of CO2 and CH4 in a heavily polluted urban atmosphere and in a remote mountain area (Southern Poland). Isotope Techniques in the Study of Environmental Change, IAEA, Vienna, pp. 37–48.Google Scholar
  13. Fuehrer, P. L., and C. A. Friehe, 2002: Flux corrections revisited. Bound.-Layer Meteor., 102, 415–458.CrossRefGoogle Scholar
  14. Grimmond, C. S. B., T. S. King, F. D. Cropley, D. J. Nowak, and C. Souch, 2002: Local-scale fluxes of carbon dioxide in urban environments: Methodological challenges and results from Chicago. Environmental Pollution, 116, S243–S254.CrossRefGoogle Scholar
  15. Grimmond, C. S. B., B. Offerle, J. A. Salmond, T. R. Oke, and A. Lemonsu, 2004: Flux and turbulence measurements at a densely built-up site in Marseille: Heat, mass (water and carbon dioxide), and momentum. J. Geophys. Res., 109, 1–19.Google Scholar
  16. Helfter, C., D. Famulari, G. J. Phillips, J. F. Barlow, C. R. Wood, C. S. B. Grimmond, and E. Nemitz, 2011: Controls of carbon dioxide concentrations and fluxes above central London. Atmospheric Chemistry and Physics, 11, 1913–1928.CrossRefGoogle Scholar
  17. Henninger S., and W. Kuttler, 2010: Near surface carbon dioxide within the urban area of Essen, Germany. Physics and Chemistry of the Earth, 36, 76–84.CrossRefGoogle Scholar
  18. Hsieh C.-I., G. Katul, and T. Chi, 2000: An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Advances in Water Resources, 23, 765–772.CrossRefGoogle Scholar
  19. Idso, C. D., S. B. Idso, and R. C. Balling Jr., 1998: The urban CO2 dome of Phoenix area, Arizona. Physical Geography, 19, 95–108.Google Scholar
  20. IEA (international Energy Agency), 2010: CO2 emissions from fuel combustion. OECD/IEA. [Available online at http://www.iea.org].Google Scholar
  21. Joo, S. J., S.-U. Park, M.-S. Park, and C. S. Lee, 2012: Estimation of soil respiration using automated chamber systems in an oak (Quercus mongolica) forest at the Nam-San site in Seoul, Korea. Science of the Total Environment, 416, 400–409.CrossRefGoogle Scholar
  22. KMA (Korea Meteorological Administration), 2011: Summary of Korea global atmospheric watch 2010 report. KMA Korea Global Atmospheric Watch Center.Google Scholar
  23. KMA (Korea Meteorological Administration), 2012: Annual Climatological Report. Korea Meteorological Administration, Seoul Korea, 311 pp.Google Scholar
  24. Koerner, B., and J. Klopatek, 2002: Anthropogenic and natural CO2 emission sources in an arid urban environment. Environmental Pollution, 116, S45–S51.CrossRefGoogle Scholar
  25. Kordowski, K., and W. Kuttler, 2010: Carbon dioxide fluxes over an urban park area. Atmos. Environ., 44(23), 2722–2730.CrossRefGoogle Scholar
  26. Lee, D., K. H. Yook, D. Lee, S. Kang, H. Kang, J. H. Lin, and K. H. Lee, 2002: Changes in annual CO2 fluxes estimated from inventory data in South Korea. Science in China (C), 45, 87–96.CrossRefGoogle Scholar
  27. Lee, S.-H., C.-K. Song, J.-J. Baik, and S.-U. Park, 2009: Estimation of anthropogenic heat emission in the Gyeong-In region of Korea. Theoretical and Applied Climatology, 96, 291–303.CrossRefGoogle Scholar
  28. Lee, X., W. Massman, and B. Law, 2004: Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. Kluwer Academic Publishers, 250 pp.Google Scholar
  29. Liu, H. Z., J. W. Feng, L. Jarvi, and T. Vesala, 2012: Eddy covariance measurements of CO2 and energy fluxes in the city of Beijing. Atmospheric Chemistry and Physics Discuss, 12, 7677–7704.CrossRefGoogle Scholar
  30. Matese, A., B. Gioli, F. P. Vaccari, A. Zaldei, and F. Miglietta, 2009: Carbon dioxide emissions of the city center of Firenze, Italy: Measurement, evaluation, and source partitioning. J. Appl. Meteor. Climatol., 48(9), 1940–1947.CrossRefGoogle Scholar
  31. Miyaoka, Y., H. Y. Inoue, Y. Sawa, H. Matsueda, and S. Taguchi, 2007: Diurnal and seasonal variations in atmospheric CO2 in Sapporo, Japan: Anthropogenic sources and biogenic sinks. Geochemical Journal, 41, 429–436.CrossRefGoogle Scholar
  32. Moriwaki, R., and M. Kanda, 2004: Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J. Appl. Meteor., 43, 1700–1710.CrossRefGoogle Scholar
  33. Nemitz, E., K. J. Hargreaves, A. G. McDonald, J. R. Dorsey, and D. Fowler, 2002: Meteorological measurements of the urban heat budget and CO2 emissions on a city scale. Environmental Science & Technology, 36, 3139–3146.CrossRefGoogle Scholar
  34. Pataki, D. E., D. R. Bowling, and J. R. Ehleringer, 2003: Seasonal cycle of carbon dioxide and its isotopic composition in an urban atmosphere: Anthropogenic and biogenic effect. J. Geophys. Res., 108, 4735, doi:10.1029/2003JD003865.CrossRefGoogle Scholar
  35. Park, M.-S., and S.-U. Park, 2006: Effects of topographical slope angle and atmospheric stratification on surface-layer turbulence. Bound.-Layer Meteor., 118, 613–633.CrossRefGoogle Scholar
  36. Park, M.-S., S. J. Joo, and C. S. Lee, 2013: Effects of an urban park and residential area on the atmospheric CO2 concentration and flux in Seoul, Korea. Adv. Atmos. Sci., 30(2), 503–514, doi:10.1007/s00376-012-2079-7.CrossRefGoogle Scholar
  37. Pawlak, W., K. Fortuniak, and M. Siedlecki, 2011: Carbon dioxide flux in the centre of Lódź Poland-analysis of a 2-year eddy covariance measurement data set. International Journal of Climatology, 31, 232–243CrossRefGoogle Scholar
  38. Rotach, M. W., and Coauthors, 2005: BUBBLE-an urban boundary layer meteorology project. Theor. Appl. Climatol., 81, 231–261.CrossRefGoogle Scholar
  39. Schmid, H. P., C. S. B. Grimmond, F. Cropley, B. Offerle, and H. B. Su, 2000: Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agricultural and Forest Meteorology, 103, 357–374.CrossRefGoogle Scholar
  40. Schimidt, A., T. Wrzesinsky, and O. Klemm, 2008: Gap filling and quality assessment of CO2 and water vapour fluxes above an urban area with radial basis function neural networks. Bound.-Layer Meteor., 126, 389–413.CrossRefGoogle Scholar
  41. Soegaard, H., and L. Møller-Jensen, 2003: Towards a spatial CO2 budget of a metropolitan region based on textural image classification and flux measurements. Remote Sensing of Environment, 87, 283–294.CrossRefGoogle Scholar
  42. Stull, R. B., 1988: An Introduction to the Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.CrossRefGoogle Scholar
  43. Velasco, E., S. Pressley, E. Allwine, H. Westberg, and B. Lamb, 2005: Measurements of CO2 fluxes from the Mexico City urban landscape. Atmos. Environ., 39, 7433–7446.CrossRefGoogle Scholar
  44. Velasco, E., and Coauthors, 2009: Eddy covariance flux measurements of pollutant gases in urban Mexico City. Atmospheric Chemistry and Physics, 9, 7325–7342.CrossRefGoogle Scholar
  45. Vogt, R., A. Christen, M. W. Rotach, M. Roth, and A. N. V. Satyanarayang, 2006: Temporal dynamics of CO2 fluxes and profiles over a central European city. Theor. Appl. Climatol., 84, 117–126.CrossRefGoogle Scholar
  46. Walsh, C. J., T. R. Oke, C. S. B. Grimmond, and J. A. Salmond, 2004: Fluxes of atmospheric carbon dioxide over a suburban area of Vancouver. 5th Symposium on the Urban Environment, 23–27 August, Vancouver, Canada.Google Scholar
  47. Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106, 85–100.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Weather Information Service EngineCenter for Atmospheric Science & Earthquake ResearchSeoulKorea
  2. 2.Center for Atmospheric and Environmental ModelingSeoulKorea

Personalised recommendations