Advertisement

Advances in Atmospheric Sciences

, Volume 31, Issue 3, pp 551–558 | Cite as

Nonlinear measurement function in the ensemble Kalman filter

  • Youmin TangEmail author
  • Jaison Ambandan
  • Dake Chen
Article

Abstract

The optimal Kalman gain was analyzed in a rigorous statistical framework. Emphasis was placed on a comprehensive understanding and interpretation of the current algorithm, especially when the measurement function is nonlinear. It is argued that when the measurement function is nonlinear, the current ensemble Kalman Filter algorithm seems to contain implicit assumptions: the forecast of the measurement function is unbiased or the nonlinear measurement function is linearized. While the forecast of the model state is assumed to be unbiased, the two assumptions are actually equivalent.

On the above basis, we present two modified Kalman gain algorithms. Compared to the current Kalman gain algorithm, the modified ones remove the above assumptions, thereby leading to smaller estimated errors. This outcome was confirmed experimentally, in which we used the simple Lorenz 3-component model as the test-bed. It was found that in such a simple nonlinear dynamical system, the modified Kalman gain can perform better than the current one. However, the application of the modified schemes to realistic models involving nonlinear measurement functions needs to be further investigated.

Key words

ensemble Kalman filter measurement function data assimilation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambadan, J. T., and Y. M. Tang, 2011: Sigma-point particle filter for parameter estimation in a multiplicative noise environment. Journal of Advances in Modeling Earth Systems, 3, M12005, doi:10.1029/2011MS000065.CrossRefGoogle Scholar
  2. Anderson, J. L., 2001: An ensemble adjustment kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884–2903.CrossRefGoogle Scholar
  3. Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210–224.CrossRefGoogle Scholar
  4. Courtier, P., and Coauthors, 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. Roy. Meteor. Soc., 124, 1783–1807.Google Scholar
  5. Deng, Z., Y. Tang, D. Chen, and G. Wang 2012: A hybrid ensemble generation method for EnKF for Argo data assimilation. Atmos-Ocean, 50, 129–145.CrossRefGoogle Scholar
  6. Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99(C5), 10 143–10 162.CrossRefGoogle Scholar
  7. Evensen, G., 1997: Advanced data assimilation for strongly nonlinear dynamics. Mon. Wea. Rev., 125, 1342–1354.CrossRefGoogle Scholar
  8. Evensen, G., 2003: The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dynamics, 53, 343–367.CrossRefGoogle Scholar
  9. Furrer, R., and T. Bengtsson, 2007: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. Journal of Multivariate Analysis, 98, 227–255.CrossRefGoogle Scholar
  10. Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble kalman filter for atmospheric data assimilation. Mon.Wea. Rev., 129, 123–137.CrossRefGoogle Scholar
  11. Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with an Ensemble Kalman Filter: Results with real observations. Mon. Wea. Rev., 133, 604–620.CrossRefGoogle Scholar
  12. Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform kalman filter. Physica D, 230, 112–126.CrossRefGoogle Scholar
  13. Ito, K., and K. Q. Xiong, 2000: Gaussian filters for nonlinear filtering problems. IEEE Trans. Automat. Contr., 45(5), 910–927.CrossRefGoogle Scholar
  14. Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 375pp.Google Scholar
  15. Julier, S. J., J. K. Uhlmann, and H. F. Durrant-Whyte, 1995: A new approach for filtering nonlinear systems. Proc. of the 1995 American Control Conference, Seattle WA, USA, 1628–1632.Google Scholar
  16. Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82, 35–45.CrossRefGoogle Scholar
  17. Klinker, E., F. Rabier, G. Kelly, and J.-F. Mahfouf, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. III: Experimental results and diagnostics with operational configuration. Quart. J. Roy. Meteor. Soc., 126, 1191–1215.CrossRefGoogle Scholar
  18. Le Dimet, F. X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A, 97–110.CrossRefGoogle Scholar
  19. Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141.CrossRefGoogle Scholar
  20. Miller, R. N., M. Ghil, and F. Gauthiez, 1994: Advanced data assimilation in strongly nonlinear dynamical systems. J. Atmos. Sci., 51, 1037–1056.CrossRefGoogle Scholar
  21. Simon, D., 2006: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley-Interscience, 318–320 pp.CrossRefGoogle Scholar
  22. Talagrand, O., and F. Bouttier, 2007: Data Assimilation in Meteorology and Oceanography. Academic Press, 304pp.Google Scholar
  23. Tang, Y. M., and J. Ambadan, 2009: Reply to comment on ”Sigmapoint Kalman Filters for the assimilation of strongly nonlinear systems”. J. Atmos. Sci., 66(11), 3501–3503.CrossRefGoogle Scholar
  24. Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 1485–1490.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Environmental Science and EngineeringUniversity of Northern BritishColumbiaCanada
  2. 2.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of OceanographyState Oceanic AdministrationHangzhouChina
  3. 3.International Max Planck Research School on Earth System ModellingMax Planck Institute for MeteorologyHamburgGermany

Personalised recommendations