Advances in Atmospheric Sciences

, Volume 31, Issue 3, pp 532–542 | Cite as

Effects of interannual salinity variability on the barrier layer in the western-central equatorial Pacific: A diagnostic analysis from Argo



In this paper, interannual variations in the barrier layer thickness (BLT) are analyzed using Argo three-dimensional temperature and salinity data, with a focus on the effects of interannually varying salinity on the evolution of the El Niño-Southern Oscillation (ENSO). The interannually varying BLT exhibits a zonal seesaw pattern across the equatorial Pacific during ENSO cycles. This phenomenon has been attributed to two different physical processes. During El Niño (La Niña), the barrier layer (BL) is anomalously thin (thick) west of about 160°E, and thick (thin) to the east. In the western equatorial Pacific (the western part: 130°–160°E), interannual variations of the BLT indicate a lead of one year relative to those of the ENSO onset. The interannual variations of the BLT can be largely attributed to the interannual temperature variability, through its dominant effect on the isothermal layer depth (ILD). However, in the central equatorial Pacific (the eastern part: 160°E–170°W), interannual variations of the BL almost synchronously vary with ENSO, with a lead of about two months relative to those of the local SST. In this region, the interannual variations of the BL are significantly affected by the interannually varying salinity, mainly through its modulation effect on the mixed layer depth (MLD). As evaluated by a one-dimensional boundary layer ocean model, the BL around the dateline induced by interannual salinity anomalies can significantly affect the temperature fields in the upper ocean, indicating a positive feedback that acts to enhance ENSO.

Key words

barrier layer salinity effect ENSO Argo 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ando, K., and M. J. McPhaden, 1997: Variability of surface layer hydrography in the tropical Pacific Ocean. J. Geophys. Res., 102, 23 063–23 078.CrossRefGoogle Scholar
  2. Bosc, C., T. Delcroix, and C. Maes, 2009: Barrier layer variability in the western Pacific warm pool from 2000 to 2007. J. Geophys. Res., 114, C06023, doi: 10.1029/2008JC005187.Google Scholar
  3. Cooper, N. S., 1988: The effect of salinity on tropical ocean models. J. Phys. Oceanogr., 18, 697–707.CrossRefGoogle Scholar
  4. Cravatte, S., T. Delcroix, D. X. Zhang, M. McPhaden, and J. Leloup, 2009: Observed freshening and warming of the western Pacific warm pool. Climate Dyn., 33, 565–589, doi: 10.1007/s00382-009-0526-7.CrossRefGoogle Scholar
  5. Delcroix, T., and C. Hénin, 1991: Seasonal and interannual variations of sea surface salinity in the tropical Pacific ocean. J. Geophys. Res., 96, 22 135–22 150.CrossRefGoogle Scholar
  6. Delcroix, T., and M. McPhaden, 2002: Interannual sea surface salinity and temperature changes in the western Pacific warm pool during 1992–2000. J. Geophys. Res., 107(C12), doi: 10.1029/2001JC000862.Google Scholar
  7. Delcroix, T., S. Cravatte, and M. J. McPhaden, 2007: Decadal variations and trends in tropical Pacific sea surface salinity since 1970. J. Geophys. Res., 112, C03012, doi: 10.1029/2006JC003801.Google Scholar
  8. de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Ludicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi: 10.1029/2004JC002378.CrossRefGoogle Scholar
  9. Eldin, G., M. Rodier, and M.-H. Radenac, 1997: Physical and nutrient variability in the upper equatorial Pacific associated with westerly wind forcing and wave activity in October 1994. Deep-Sea Res. (II), 44, 1783–1800.CrossRefGoogle Scholar
  10. Fedorov, A.V., R. C. Pacanowski, S. G. Philander, and G. Boccaletti, 2004: The effect of salinity on the wind-driven circulation and the thermal structure of the upper ocean. J. Phys. Oceanogr., 34, 1949–1966.CrossRefGoogle Scholar
  11. Fujii, Y., M. Kamachi, S. Matsumoto, and S. Ishizaki, 2012: Bar rier layer and relevant variability of the salinity field in the equatorial Pacific estimated in an ocean reanalysis experiment. Pure Appl. Geophys., 169, 579–594.CrossRefGoogle Scholar
  12. Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati, 1988: A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci., 45, 55–62.CrossRefGoogle Scholar
  13. Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.Google Scholar
  14. Huang, B. Y., and V. M. Mehta, 2005: Response of the Pacific and Atlantic oceans to interannual variations in net atmospheric freshwater. J. Geophys. Res., 110, C08008, doi: 10.1029/2004JC002830.Google Scholar
  15. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.CrossRefGoogle Scholar
  16. Kantha, L. H., and C. A. Clayson, 1994: An improved mixed layer model for geophysical applications. J. Geophys. Res., 99(C12), 25 235–25 266.CrossRefGoogle Scholar
  17. Levitus, S., 1982: Climatological atlas of the world ocean. NOAA Professional Paper No. 13. US Government Printing Office, 173 pp.Google Scholar
  18. Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 96, 3343–3357.CrossRefGoogle Scholar
  19. Maes, C., 2000: Salinity variability in the equatorial Pacific Ocean during the 1993–98 period. Geophys. Res. Lett., 27, 1659–1662, doi: 10.1029/1999GL011261.CrossRefGoogle Scholar
  20. Maes, C., 2008: On the ocean salinity stratification observed at the eastern edge of the equatorial Pacific warm pool. J. Geophys. Res., 113, C03027, doi: 10.1029/2007JC004297.Google Scholar
  21. Maes, C., P. Delecluse, and G. Madec, 1997: Impact of westerly wind bursts on the warm pool of the TOGA-COARE domain in an OGCM. Climate Dyn., 14, 55–70, doi: 10.1007/s003820050208.CrossRefGoogle Scholar
  22. Maes, C., J. Picaut, and S. Belamari, 2002: Salinity barrier layer and onset of El Niño in a Pacific coupled model. Geophys. Res. Lett., 29(24), doi: 10.1029/2002GL016029.Google Scholar
  23. Maes, C., J. Picaut, and S. Belamari, 2005: Importance of salinity barrier layer for the buildup of El Niño. J. Climate, 18, 104–118, doi: 10.1175/JCLI-3214.1.CrossRefGoogle Scholar
  24. Maes, C., K. Ando, T. Delcroix, W. S. Kessler, M. J. McPhaden, and D. Roemmich, 2006: Observed correlation of surface salinity, temperature and barrier layer at the eastern edge of the western Pacific warm pool. Geophys. Res. Lett., 33, L06601, doi: 10.1029/2005GL024772.Google Scholar
  25. McPhaden, M. J., and X. B. Zhang, 2009: Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys. Res. Lett., 36, L13703, doi: 10.1029/2009GL038774.CrossRefGoogle Scholar
  26. Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20(4), 851–875.CrossRefGoogle Scholar
  27. Murtugudde, R., and A. J. Busalacchi, 1998: Salinity effects in a tropical ocean model. J. Geophys. Res., 103, 3283–3300.CrossRefGoogle Scholar
  28. Picaut, J., M. Ioualalen, C. Menkes, T. Delcroix, and M. J. McPhaden, 1996: Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO. Science, 274, 1486–1489, doi: 10.1126/science.274.5292.1486.CrossRefGoogle Scholar
  29. Sato, K., T. Suga, and K. Hanawa, 2004: Barrier layer in the North Pacific subtropical gyre. Geophys. Res. Lett., 31, L05301, doi: 10.1029/2003GL018590.Google Scholar
  30. Sato, K., T. Suga, and K. Hanawa, 2006: Barrier layers in the subtropical gyres of the world’s oceans. Geophys. Res. Lett., 33, L08603, doi: 10.1029/2005GL025631.Google Scholar
  31. Vialard, J., and P. Delecluse, 1998a: An OGCM study for the TOGA decade. Part I: Role of salinity in the physics of the western Pacific fresh pool. J. Phys. Oceanogr., 28, 1071–1088.CrossRefGoogle Scholar
  32. Vialard, J., and P. Delecluse, 1998b: An OGCM study for the TOGA decade. Part II: Barrier-layer formation and variability. J. Phys. Oceanogr., 28, 1089–1106.CrossRefGoogle Scholar
  33. Vialard, J., P. Delecluse, and C. Menkes, 2002: A modeling study of salinity variability and its effects in the tropical Pacific Ocean during the 1993-1999 period. J. Geophys. Res., 107(C12), SRF6-1–SRF6-14, doi: 10.1029/2000JC000758.Google Scholar
  34. Zhang, R.-H., and S. E. Zebiak, 2004: An embedding method for improving interannual variability simulations in a hybrid coupled model of the tropical Pacific ocean-atmosphere system. J. Climate, 17(14), 2794–2812.CrossRefGoogle Scholar
  35. Zhang, R.-H., and A. J. Busalacchi, 2009: Freshwater flux (FWF)-induced oceanic feedback in a hybrid coupled model of the tropical Pacific. J. Climate, 22, 853–879.CrossRefGoogle Scholar
  36. Zhang, R.-H., G.-H. Wang, D. K. Chen, A. J. Busalacchi, and E. C. Hackert, 2010: Interannual biases induced by freshwater flux and coupled feedback in the tropical Pacific. Mon. Wea. Rev., 138, 1715–1737.CrossRefGoogle Scholar
  37. Zhang, R.-H., F. Zheng, J. S. Zhu, Y. H. Pei, Q. N. Zheng, and Z. G. Wang, 2012: Modulation of El Niño-southern oscillation by freshwater flux and salinity variability in the tropical Pacific. Adv. Atmos. Sci., 29, 647–660, doi: 10.1007/s00376-012-1235-4.CrossRefGoogle Scholar
  38. Zheng, F., and J. Zhu, 2010: Coupled assimilation for an intermediated coupled ENSO prediction model. Ocean Dyn., 60, 1061–1073, doi: 10.1007/s10236-010-0307-1.CrossRefGoogle Scholar
  39. Zheng, F., and R.-H. Zhang, 2012: Effects of interannual salinity variability and freshwater flux forcing on the development of the 2007/08 La Niña event diagnosed from argo and satellite data. Dyn. Atmos. Oceans, 57, 45–57.CrossRefGoogle Scholar
  40. Zheng, F., J. Zhu, R.-H. Zhang, and G.-Q. Zhou, 2006: Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model. Geophys. Res. Lett., 33, L19604, doi: 10.1029/2006GL026994.CrossRefGoogle Scholar
  41. Zheng, F., J. Zhu, and R.-H. Zhang, 2007: Impact of altimetry data on ENSO ensemble initializations and predictions. Geophys. Res. Lett., 34, L13611, doi: 10.1029/2007GL030451.CrossRefGoogle Scholar
  42. Zheng, F., J. Zhu, H. Wang, and R.-H. Zhang, 2009: Ensemble hindcasts of ENSO events over the past 120 years using a large number of ensembles. Adv. Atmos. Sci., 26(2), 359–372, doi: 10.1007/s00376-009-0359-7.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.International Center for Climate and Environment Science, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Ocean Circulation and Waves, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  3. 3.Earth System Science Interdisciplinary CenterUniversity of MarylandCollege ParkUSA

Personalised recommendations