Advances in Atmospheric Sciences

, Volume 31, Issue 1, pp 8–16 | Cite as

Greenland ice sheet contribution to future global sea level rise based on CMIP5 models

  • Qing Yan
  • Huijun Wang
  • Ola M. Johannessen
  • Zhongshi Zhang
Article

Abstract

Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large uncertainties in modeled climate and ice sheet behavior. We used the ice sheet model SICOPOLIS (SImulation COde for POLythermal Ice Sheets) driven by climate projections from 20 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to estimate the GrIS contribution to global SLR. Based on the outputs of the 20 models, it is estimated that the GrIS will contribute 0–16 (0–27) cm to global SLR by 2100 under the Representative Concentration Pathways (RCP) 4.5 (RCP 8.5) scenarios. The projected SLR increases further to 7–22 (7–33) cm with 2×basal sliding included. In response to the results of the multimodel ensemble mean, the ice sheet model projects a global SLR of 3 cm and 7 cm (10 cm and 13 cm with 2×basal sliding) under the RCP 4.5 and RCP 8.5 scenarios, respectively. In addition, our results suggest that the uncertainty in future sea level projection caused by the large spread in climate projections could be reduced with model-evaluation and the selective use of model outputs.

Key words

sea level rise Greenland ice sheet ice sheet modeling model evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthern, R. J., and G. H. Gudmundsson, 2010: Initialization of ice sheet forecasts viewed as an inverse Robin problem. J. Glaciol., 56, 527–533.CrossRefGoogle Scholar
  2. Bindoff, N. L., and Coauthors, 2007: Observations: Oceanic climate change and sea level. Climate Change 2007: The Physical Science Basis, S. Solomon, et al., Eds., Cambridge University Press, 385–432.Google Scholar
  3. Bindschadler, R., 2006: Hitting the ice sheets where it hurts. Science, 311, 1720–1721.CrossRefGoogle Scholar
  4. Bindschadler, R. A., and Coauthors, 2013: Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project). J. Glaciol., 59, 195–224.CrossRefGoogle Scholar
  5. Bougamont, M., J. L. Bamber, J. K. Ridley, R. M. Gladstone, W. Greuell, E. Hanna, A. J. Payne, and I. Rutt, 2007: Impact of model physics on estimating the surface mass balance of the Greenland ice sheet. Geophys. Res. Lett., 34, L17501, doi: 10.1029/2007GL030700.CrossRefGoogle Scholar
  6. Calov, R., and R. Greve, 2005: A semi-analytical solution for the positive degree-day model with stochastic temperature variations. J. Glaciol., 51, 173–175.CrossRefGoogle Scholar
  7. Calov, R., and Coauthors, 2010: Results from the Ice-Sheet Model Intercomparison Project Heinrich Event INtercOmparison (ISMIP HEINO). J. Glaciol., 56, 371–383.CrossRefGoogle Scholar
  8. Chen, L., O. Johannessen, H. Wang, and A. Ohmura, 2011: Accumulation over the Greenland ice sheet as represented in reanalysis data. Adv. Atmos. Sci., 28, 1030–1038, doi: 10.1007/s00376-010-0150-9.CrossRefGoogle Scholar
  9. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.CrossRefGoogle Scholar
  10. Ettema, J., M. R. van den Broeke, E. van Meijgaard, W. J. van de Berg, J. L. Bamber, J. E. Box, and R. C. Bales, 2009: Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys. Res. Lett., 36, doi: 10.1029/2009GL038110.Google Scholar
  11. Fausto, R. S., A. P. Ahlstrom, D. Van As, C. E. Boggild, and S. J. Johnsen, 2009: A new present-day temperature parameterization for Greenland. J. Glaciol., 55, 95–105.CrossRefGoogle Scholar
  12. Franco, B., X. Fettweis, M. Erpicum, and S. Nicolay, 2011: Present and future climates of the Greenland ice sheet according to the IPCC AR4 models. Climate Dyn., 36, 1897–1918.CrossRefGoogle Scholar
  13. Gillet-Chaulet, F., and Coauthors, 2012: Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model. The Cryosphere, 6, 1561–1576.CrossRefGoogle Scholar
  14. Graversen, R. G., S. Drijfhout, W. Hazeleger, R. van de Wal, R. Bintanja, and M. Helsen, 2011: Greenland’s contribution to global sea-level rise by the end of the 21st century. Climate Dyn., 37, 1427–1442.CrossRefGoogle Scholar
  15. Greve, R., 1995: Thermomechanisches Verhalten polythermer Eisschilde-Theorie, Analytik, Numerik. PhD thesis, Darmstadt Univ. of Technology, Darmstadt, Germany, 226 pp.Google Scholar
  16. Greve, R., 1997a: A continuum-mechanical formulation for shallow polythermal ice sheets. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 355, 921–974.CrossRefGoogle Scholar
  17. Greve, R., 1997b: Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: Response to steady-state and transient climate scenarios. J. Climate, 10, 901–918.CrossRefGoogle Scholar
  18. Greve, R., 2005: Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet. Annals of Glaciology, 42, 424–432.CrossRefGoogle Scholar
  19. Greve, R., and U. C. Herzfeld, 2013: Resolution of ice streams and outlet glaciers in large-scale simulations of the Greenland ice sheet. Annals of Glaciology, 54, 209–220.CrossRefGoogle Scholar
  20. Greve, R., F. Saito, and A. Ace-Ouchi, 2011: Initial results of the SeaRISE numerical experiments with the models SICOPOLIS and IcIES for the Greenland ice sheet. Annals of Glaciology, 52, 23–30.CrossRefGoogle Scholar
  21. Holland, D. M., R. H. Thomas, B. de Young, M. H. Ribergaard, and B. Lyberth, 2008: Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nature Geosci., 1, 659–664.CrossRefGoogle Scholar
  22. Huybrechts, P., J. Gregory, I. Janssens, and M. Wild, 2004: Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Global and Planetary Change, 42, 83–105.CrossRefGoogle Scholar
  23. Joughin, I., B. E. Smith, I. M. Howat, T. Scambos, and T. Moon, 2010: Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56, 415–430.CrossRefGoogle Scholar
  24. Meehl, G., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. Mitchell, R. Stouffer, and K. Taylor, 2007a: The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383–1394.CrossRefGoogle Scholar
  25. Meehl, G. A., and Coauthors, 2007b: Global Climate Projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.Google Scholar
  26. Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213–241.CrossRefGoogle Scholar
  27. Moon, T., I. Joughin, B. Smith, and I. Howat, 2012: 21st-century evolution of Greenland outlet glacier velocities. Science, 336, 576–578.CrossRefGoogle Scholar
  28. Moss, R. H., and Coauthors, 2010. The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756.CrossRefGoogle Scholar
  29. Price, S. F., A. J. Payne, I. M. Howat, and B. E. Smith, 2011: Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc. Natl. Acad. Sci., 108, 8978–8983.CrossRefGoogle Scholar
  30. Reeh, N., 1991: Parameterization of melt rate and surfaee temperature on the Greenland ice sheet. Polarforschung, 59, 113–128.Google Scholar
  31. Seddik, H., R. Greve, T. Zwinger, F. Gillet-Chaulet, and O. Gagliardini, 2012: Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice. J. Glaciol., 58, 427–440.CrossRefGoogle Scholar
  32. Shapiro, N. M., and M. H. Ritzwoller, 2004: Inferring surface heat flux distributions guided by a global seismic model: Particular application to Antarctica. Earth and Planetary Science Letters, 223, 213–224.CrossRefGoogle Scholar
  33. Sørensen, L. S., S. Simonsen, K. Nielsen, P. Lucas-Picher, G. Spada, G. Adalgeirsdottir, R. Forsberg, and C. Hvidberg, 2011: Mass balance of the Greenland ice sheet (2003–2008) from ICESat data—The impact of interpolation, sampling and firn density. The Cryosphere, 5, 173–186.CrossRefGoogle Scholar
  34. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res, 106, 7183–7192.CrossRefGoogle Scholar
  35. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.CrossRefGoogle Scholar
  36. van den Broeke, M. R., J. Bamber, J. Lenaerts, and E. Rignot, 2011: Ice sheets and sea level: Thinking outside the box. Surveys in Geophysics, 32, 495–505.CrossRefGoogle Scholar
  37. Walsh, J. E., W. L. Chapman, V. Romanovsky, J. H. Christensen, and M. Stendel, 2008: Global climate model performance over Alaska and Greenland. J. Climate, 21, 6156–6174.CrossRefGoogle Scholar
  38. Winkelmann, R., and A. Levermann, 2012: Linear response functions to project contributions to future sea level. Climate. Dyn., doi 10.1007/s00382-012-1471-4.Google Scholar
  39. Xu, Y., X. Gao, and F. Giorgi, 2010: Upgrades to the reliability ensemble averaging method for producing probabilistic climatechange projections. Climate Research, 41, 61–81.CrossRefGoogle Scholar
  40. Zwally, H. J., and Coauthors, 2011: Greenland ice sheet mass balance: Distribution of increased mass loss with climate warming; 2003-07 versus 1992–2002. J. Glaciol., 57, 88–102.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Qing Yan
    • 1
    • 2
    • 3
  • Huijun Wang
    • 1
    • 4
  • Ola M. Johannessen
    • 2
    • 1
    • 6
  • Zhongshi Zhang
    • 5
    • 1
  1. 1.Nansen-Zhu International Research Centre, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Nansen Environmental and Remote Sensing CenterBergenNorway
  3. 3.University of the Chinese Academy of SciencesBeijingChina
  4. 4.Climate Change Research CenterChinese Academy of SciencesBeijingChina
  5. 5.Bjerknes Centre for Climate ResearchUni ResearchBergenNorway
  6. 6.Nansen Scientific SocietyBergenNorway

Personalised recommendations