Advances in Atmospheric Sciences

, Volume 30, Issue 6, pp 1621–1631 | Cite as

A global ocean reanalysis product in the China Ocean Reanalysis (CORA) project

  • Guijun Han (韩桂军)
  • Hongli Fu (付红丽)
  • Xuefeng Zhang (张学峰)
  • Wei Li (李 威)
  • Xinrong Wu (吴新荣)
  • Xidong Wang (王喜冬)
  • Lianxin Zhang (张连新)
Article

Abstract

The first version of a global ocean reanalysis over multiple decades (1979–2008) has been completed by the National Marine Data and Information Service within the China Ocean Reanalysis (CORA) project. The global ocean model employed is based upon the ocean general circulation model of the Massachusetts Institute of Technology. A sequential data assimilation scheme within the framework of 3D variational (3DVar) analysis, called multi-grid 3DVar, is implemented in 3D space for retrieving multiple-scale observational information. Assimilated oceanic observations include sea level anomalies (SLAs) from multi-altimeters, sea surface temperatures (SSTs) from remote sensing satellites, and in-situ temperature/salinity profiles.

Evaluation showed that compared to the model simulation, the annual mean heat content of the global reanalysis is significantly approaching that of World Ocean Atlas 2009 (WOA09) data. The quality of the global temperature climatology was found to be comparable with the product of Simple Ocean Data Assimilation (SODA), and the major ENSO events were reconstructed. The global and Atlantic meridional overturning circulations showed some similarity as SODA, although significant differences were found to exist. The analysis of temperature and salinity in the current version has relatively larger errors at high latitudes and improvements are ongoing in an updated version. CORA was found to provide a simulation of the subsurface current in the equatorial Pacific with a correlation coefficient beyond about 0.6 compared with the Tropical Atmosphere Ocean (TAO) mooring data. The mean difference of SLAs between altimetry data and CORA was less than 0.1 m in most years.

Key words

global ocean ocean reanalysis dataset China Ocean Reanalysis (CORA) multi-grid 3DVar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, 2011: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92(2), 157–174.CrossRefGoogle Scholar
  2. Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon. Wea. Rev., 136, 2999–3017.CrossRefGoogle Scholar
  3. Carton, J. A., G. Chepurin, and X. Cao, 2000a: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30, 294–309.CrossRefGoogle Scholar
  4. Carton, J. A., G. Chepurin, and X. Cao, 2000b: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part II: Results. J. Phys. Oceanogr., 30, 311–326.CrossRefGoogle Scholar
  5. Derber, J., and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19, 1333–1347.CrossRefGoogle Scholar
  6. Dong, S. F., S. Garzoli, M. Baringer, C. Meinen, G. Goni, 2009: Interannual variations in the Atlantic meridional overturning circulation and its relationship with the net northward heat transport in the South Atlantic. Geophys. Res. Lett., 36, L20606, doi: 10.1029/2009GL039356.CrossRefGoogle Scholar
  7. Dursku, S. M., S. M. Glenn, and D. B. Haidvogel, 2004: Vertical mixing schemes in the coastal ocean: Comparison of the level 2.5 Mellor-Yamada scheme with an enhanced version of the K profile parameterization. J. Geophys. Res., 109(C01015), 1029–1051.Google Scholar
  8. Han, G. J and Coauthors 2011: A regional ocean reanalysis system for coastal waters of china and adjacent seas. Adv. Atmos. Sci., 28(3), 682–690, doi: 10.1007/s00376-010-9184-2.CrossRefGoogle Scholar
  9. He, Z. J., G. J. Han, W. Li, D. Li, X. F. Zhang, X. D. Wang, and X. R. Wu, 2010: Experiments on assimilating of satellite data in the China seas and adjacent seas. Periodical of Ocean University of China, 40(9), 1–7. (in Chinese)Google Scholar
  10. Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363–403.CrossRefGoogle Scholar
  11. Li, W., Y. F. Xie, Z. J. He, K. X. Liu, G. J. Han, J. R. Ma, and D. Li, 2008: Application of the multi-grid data assimilation scheme to the China Seas’ temperature forecast. J. Atmos. Oceanic. Technol., 25(11), 2106–2116.CrossRefGoogle Scholar
  12. Li, W., Y. F. Xie, S. M. Deng, and Q. Wang, 2010: Application of the multigrid method to the twodimensional doppler radar radial velocity data assimilation. J. Atmos. Oceanic. Technol., 27(2), 319–332.CrossRefGoogle Scholar
  13. Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modelling. J. Geophys. Res., 102(C3), 5733–5753.CrossRefGoogle Scholar
  14. Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily highresolution blended analyses for sea surface temperature. J. Climate, 20(22), 5473–5496.CrossRefGoogle Scholar
  15. Shu, Y. Q., J. Zhu, D. X. Wang, C. X. Yan, and X. J. Xiao, 2009: Performance of four sea surface temperature assimilation schemes in the South China Sea. Continental Shelf Research, 29, 1489–1501.CrossRefGoogle Scholar
  16. Shu, Y. Q., J. Zhu, and D. X. Wang, 2011: Assimilating remote sensing and in situ observations into a coastal model of northern South China Sea using ensemble Kalman filter. Continental Shelf Research, 31, S24–S36.CrossRefGoogle Scholar
  17. Stammer, D., and E. P. Chassignet, 2000: Ocean state estimation and prediction in support of oceanographic research. Oceanography, 13, 51–56.CrossRefGoogle Scholar
  18. Troccoli, A., and Coauthors, 2002: Salinity adjustments in the presence of temperature data assimilation. Mon. Wea. Rev., 130, 89–102.CrossRefGoogle Scholar
  19. Wang, D. X., Y. H. Qin, X. J. Xiao, Z. Q. Zhang, and F. M. Wu, 2012a: Preliminary results of a new global ocean reanalysis. Chinese Science Bulletin, 57, 3509–3517.CrossRefGoogle Scholar
  20. Wang, D. X., Y. H. Qin, X. J. Xiao, Z. Q. Zhang, and X. Y. Wu, 2012b: El Niño and El Niño Modoki variability based on a new ocean reanalysis. Ocean Dynamics, 62, 1311–1322.CrossRefGoogle Scholar
  21. Wong, A. P. S., G. C. Johnson, and W. B. Owens, 2003: Delayed-mode calibration of autonomous CTD pro-filing float salinity data by S-θ climatology. J. Atmos. Oceanic Technol., 20, 308–318.CrossRefGoogle Scholar
  22. Xiao, X. J., D. X. Wang, and J. J. Xu, 2006: The assimilation experiment in the southwestern South China Sea in summer 2000. Chinese Science Bulletin, 51, doi: 10.1007/s11434-006-9031-4.Google Scholar
  23. Xiao, X. J., D. X. Wang, C. X. Yan, and J. Zhu, 2008: Evaluation of a 3DVAR system for the South China Sea. Progress in Natural Science, 18, 547–554.CrossRefGoogle Scholar
  24. Xie, Y., S. Koch, J. Mcginley, S. Albers, P. E. Bieringer, M. Wolfson, and M. Chan, 2011: A space-time multiscale analysis system: a sequential variational analysis approach. Mon. Wea. Rev., 139, 1224–1240.CrossRefGoogle Scholar
  25. Yan, C. X., J. Zhu, and G. Q. Zhou, 2004: The roles of vertical correlation of the background covariance and T-S relation in estimation temperature and salinity profiles from surface dynamic height. J. Geophys. Res., 109, doi: 10. 1029/2003JC002224.Google Scholar
  26. Yelland, M., and P. K. Taylor, 1996: Wind stress measurements from the open ocean. J. Phys. Oceanogr., 26, 541–558.CrossRefGoogle Scholar
  27. Zhu, J., and C. X. Yan, 2006: Nonlinear balance constraint in 3DVAR. Sci. China (D), 49, 331–336.CrossRefGoogle Scholar
  28. Zhu, J., G. Q. Zhou, C. X. Yan, and X. B. You, 2006: A three-dimensional variational ocean data assimilation system: Scheme and preliminary results. Sci. China (D), 49(12), 1212–1222.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guijun Han (韩桂军)
    • 1
  • Hongli Fu (付红丽)
    • 1
  • Xuefeng Zhang (张学峰)
    • 1
  • Wei Li (李 威)
    • 1
  • Xinrong Wu (吴新荣)
    • 1
  • Xidong Wang (王喜冬)
    • 1
  • Lianxin Zhang (张连新)
    • 1
  1. 1.Key Laboratory of Marine Environmental Information Technology, State Oceanic AdministrationNational Marine Data and Information ServiceTianjinChina

Personalised recommendations