Advances in Atmospheric Sciences

, Volume 30, Issue 3, pp 699–712 | Cite as

Variation of surface temperature during the last millennium in a simulation with the FGOALS-gl climate system model

  • Jie Zhang (张 洁)Email author
  • Laurent Li
  • Tianjun Zhou (周天军)
  • Xiaoge Xin (辛晓歌)


A reasonable past millennial climate simulation relies heavily on the specified external forcings, including both natural and anthropogenic forcing agents. In this paper, we examine the surface temperature responses to specified external forcing agents in a millennium-scale transient climate simulation with the fast version of LASG IAP Flexible Global Ocean-Atmosphere-Land System model (FGOALS-gl) developed in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP). The model presents a reasonable performance in comparison with reconstructions of surface temperature. Differentiated from significant changes in the 20th century at the global scale, changes during the natural-forcing-dominant period are mainly manifested in the Northern Hemisphere. Seasonally, modeled significant changes are more pronounced during the wintertime at higher latitudes. This may be a manifestation of polar amplification associated with sea-ice-temperature positive feedback. The climate responses to total external forcings can explain about half of the climate variance during the whole millennium period, especially at decadal timescales. Surface temperature in the Antarctic shows heterogeneous and insignificant changes during the preindustrial period and the climate response to external forcings is undetectable due to the strong internal variability. The model response to specified external forcings is modulated by cloud radiative forcing (CRF). The CRF acts against the fluctuations of external forcings. Effects of clouds are manifested in shortwave radiation by changes in cloud water during the natural-forcing-dominant period, but mainly in longwave radiation by a decrease in cloud amount in the anthropogenic-forcing-dominant period.

Key words

last millennium external forcing surface temperature cloud radiative forcing climate system model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. B., M. E. Mann, and C. M. Ammann, 2003: Proxy evidence for an El Niño-like response to volcanic forcing. Nature, 426(6964), 274–278.CrossRefGoogle Scholar
  2. Ammann, C. M., F. Joos, D. S. Schimel, B. L. Otto-Bliesner, and R. A. Tomas, 2007: Solar influence on climate during the past millennium: Results from transient simulations with the NCAR climate system model. Proc. the National Academy of Sciences, 104(10), 3713–3718.CrossRefGoogle Scholar
  3. Arking, A., and D. Ziskin, 1994: Relationship between clouds and sea-surface temperatures in the western tropical pacific. J. Climate, 7(6), 988–1000.CrossRefGoogle Scholar
  4. Bauer, E., M. Claussen, V. Brovkin, and A. Huenerbein, 2003: Assessing climate forcings of the Earth system for the past millennium. Geophys. Res. Lett., 30(6), 1276–1279.CrossRefGoogle Scholar
  5. Bertrand, C., M. F. Loutre, M. Crucifix, and A. Berger, 2002: Climate of the last millennium: A sensitivity study. Tellus (A), 54(3), 221–244.CrossRefGoogle Scholar
  6. Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172.CrossRefGoogle Scholar
  7. Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. B. Zeng, Y. J. Dai, R. E. Dickinson, and Z. L. Yang, 2002: The land surface climatology of the community land model coupled to the NCAR community climate model. J. Climate, 15(22), 3123–3149.CrossRefGoogle Scholar
  8. Briegleb, B., C. Bitz, E. Hunke, W. Lipscomb, M. Holland, J. Schramm, and R. Moritz. 2004: Scientific description of the sea ice component in the community climate system model, version three. NCAR Tech. Note NCAR/TN-463+STR, National Center for Atmospheric Research, Boulder, CO, 78pp.Google Scholar
  9. Cobb, K. M., C. D. Charles, H. Cheng, and R. L. Edwards, 2003: El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424(6946), 271–276.CrossRefGoogle Scholar
  10. Crowley, T. J., 2000: Causes of climate change over the past 1000 years. Science, 289(5477), 270–277.CrossRefGoogle Scholar
  11. Crowley, T. J., S. K. Baum, K. Y. Kim, G. C. Hegerl, and W. T. Hyde, 2003: Modeling ocean heat content changes during the last millennium. Geophys. Res. Lett., 30(18), doi: 10.1029/2003GL017801.Google Scholar
  12. Deser, C., and A. S. Phillips, 2009: Atmospheric circulation trends, 1950–2000: The relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J. Climate, 22(2), 396–413.CrossRefGoogle Scholar
  13. Emile-Geay, J., M. Cane, R. Seager, A. Kaplan, and P. Almasi, 2007: El Niño as a mediator of the solar influence on climate. Paleoceanography, 22(3), doi: 10.1029/2006PA001304.Google Scholar
  14. Gent, P., and Coauthors, 2011: The community climate system model version 4. J. Climate, 24, 4973–4991.CrossRefGoogle Scholar
  15. González-Rouco, F. J., and Coauthors, 2011: Medieval climate anomaly to little ice age transition as simulated by current climate models. Medieval Climate Anomaly, Pages News, 19(1), 7–8.Google Scholar
  16. Goosse, H., H. Renssen, A. Timmermann, and R. S. Bradley, 2005a: Internal and forced climate variability during the last millennium: A model-data comparison using ensemble simulations. Quaternary Science Reviews, 24(12–13), 1345–1360.CrossRefGoogle Scholar
  17. Goosse, H., T. J. Crowley, E. Zorita, C. M. Ammann, H. Renssen, and E. Driesschaert, 2005b: Modelling the climate of the last millennium: What causes the differences between simulations? Geophys. Res. Lett., 32, L06710, doi: 10.1029/2005GL022368.CrossRefGoogle Scholar
  18. Goosse, H., J. Guiot, M. E. Mann, S. Dubinkina, and Y. Sallaz-Damaz, 2011: The medieval climate anomaly in Europe: Comparison of the summer and annual mean signals in two reconstructions and in simulations with data assimilation. Global and Planetary Change, 19(1), 12–13.Google Scholar
  19. Goosse, H., P. Y. Barriat, W. Lefebvre, M. F. Loutre, and V. Zunz, 2013: Introduction to climate dynamics and climate modeling. [Available online at]Google Scholar
  20. Graham, N., and Coauthors, 2007: Tropical Pacific-midlatitude teleconnections in medieval times. Climatic Change, 83(1), 241–285, doi: 10.1007/s10584-007-9239-2.CrossRefGoogle Scholar
  21. Guiot, J., and C. Corona, 2010: Growing season temperatures in Europe and climate forcings over the past 1400 years. PloS one, 5(4), e9972, doi: 10.1371/journal. pone.0009972.CrossRefGoogle Scholar
  22. Hegerl, G., T. Crowley, S. Baum, K. Kim, and W. Hyde, 2003: Detection of volcanic, solar and greenhouse gas signals in paleoreconstructions of northern hemispheric temperature. Geophys. Res. Lett., 30, doi: 10.1029/2002GL016635.Google Scholar
  23. Hegerl, G., T. Crowley, M. Allen, W. Hyde, H. Pollack, J. Smerdon, and E. Zorita, 2007: Detection of human influence on a new, validated 1500-year temperature reconstruction. J. Climate, 20, 650–666.CrossRefGoogle Scholar
  24. IPCC, 2007: Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovermental Panel on Climate Change, S. Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996pp.Google Scholar
  25. Jansen, E., and Coauthors, 2007: Palaeoclimate. Climate change 2007: The physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Solomon et al., Eds, Cambridge University Press, Cambridge, 433–497.Google Scholar
  26. Jin, X. Z., X. H. Zhang, and T. J. Zhou, 1999: Fundamental framework and experiments of the third generation of IAP/LASG world ocean general circulation model. Adv. Atmos. Sci., 16(2), 197–215.CrossRefGoogle Scholar
  27. Jones, P., and Coauthors, 2009: High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects. The Holocene, 19(1), 3–49.CrossRefGoogle Scholar
  28. Kiehl, J. T., 1994: On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J. Climate, 7(4), 559–565.CrossRefGoogle Scholar
  29. Knutson, T. R., and Coauthors, 2006: Assessment of twentieth-century regional surface temperature trends using the GFDL CM2 coupled models. J. Climate, 19(9), 1624–1651.CrossRefGoogle Scholar
  30. Lee, W. H., S. F. Iacobellis, and R. C. J. Somerville, 1997: Cloud radiation forcings and feedbacks: General circulation model tests and observational validation. J. Climate, 10(10), 2479–2496.CrossRefGoogle Scholar
  31. Li, L., B. Wang, Y. Wang, and W. Hui, 2007: Improvements in climate simulation with modifications to the Tiedtke convective parameterization in the grid-point atmospheric model of IAP LASG (GAMIL). Adv. Atmos. Sci., 24(2), 323–335, doi: 10.1007/s00376-007-0323-3.CrossRefGoogle Scholar
  32. Li, Z. X., and S. Conil, 2003: A 1000-year simulation with the IPSL ocean-atmosphere coupled model. Annals of Geophysics, 46(1), 39–46.Google Scholar
  33. Liu, H. L., X. H. Zhang, W. Li, Y. Q. Yu, and R. C. Yu, 2004: An eddy-permitting oceanic general circulation model and its preliminary evaluation. Adv. Atmos. Sci., 21(5), 675–690.CrossRefGoogle Scholar
  34. Liu, J., B. Wang, H. Wang, X. Kuang, and R. Ti, 2011: Forced response of the East Asian summer rainfall over the past millennium: Results from a coupled model simulation. Climate Dyn., 36(1), 323–336.CrossRefGoogle Scholar
  35. Mann, M. E., 2002: The value of multiple proxies. Science, 297(5586), 1481–1482, doi: 10.1126/science.1074318.CrossRefGoogle Scholar
  36. Mann, M. E., and Coauthors, 2009: Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science, 326(5957), 1256–1260, doi: 10.1126/science.1177303.CrossRefGoogle Scholar
  37. Man, W. M., and T. J. Zhou, 2011: Forced response of atmospheric oscillations during the last millennium simulated by a climate system model. Chinese Science Bulletin, 56, 3042–3052.CrossRefGoogle Scholar
  38. Man, W. M., T. J. Zhou, J. Zhang, and B. Wu, 2011: The 20th century climate simulated by LASG/IAP climate system model FGOALS gl. Acta Meteorologica Sinica, 69(4), 644–654. (in Chinese)Google Scholar
  39. Moberg, A., D. M. Sonechkin, K. Holmgren, N. M. Datsenko, and W. Karlen, 2005: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 433(7026), 613–617.CrossRefGoogle Scholar
  40. Norris, J. R., 2005: Multidecadal changes in nearglobal cloud cover and estimated cloud cover radiative forcing. J. Geophys. Res., 110(D08206), doi: 10.1029/2004JD005600.Google Scholar
  41. NRC (Natinal Research Council), 2006: National Research Council Committee: Surface Temperature Reconstruction for the Last 2,000 Years. National Academies Press, Washington, D.C., 145pp.Google Scholar
  42. Peng, Y., Y. Xu, and L. Jin, 2009: Climate changes over eastern China during the last millennium in simulations and reconstructions. Quaternary International, 208(1–2), 11–18, doi: 10.1016/j.quaint.2009.02.013.CrossRefGoogle Scholar
  43. Philander, S. G. H., D. Gu, D. Halpern, G. Lambert, N. C. Lau, T. Li, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9(12), 2958–2972.CrossRefGoogle Scholar
  44. Phipps, S. J., 2010: The CSIRO Mk3L climate system v1.2. Tech. Rep. No. 4, Antarctic Climate & Ecosystems CRC, Hobart, Tasmania, Australia, 122pp.Google Scholar
  45. Quaas, J., O. Boucher, J. L. Dufresne, and H. Le Trent, 2004: Impacts of greenhouse gases and aerosol direct and indirect effects on clouds and radiation in atmospheric GCM simulations of the 1930–1989 period. Climate Dyn., 23(7–8), 779–789.CrossRefGoogle Scholar
  46. Raddatz, T., and Coauthors, 2007: Will the tropical land biosphere dominate the climate-carbon cycle feedback during the 21st century? Climate Dyn., doi: 10.1007/s00382-007-0247-8.Google Scholar
  47. Schmidt, G. A., and Coauthors, 2006: Present day atmospheric simulations using GISS ModelE: Comparison to in-situ, satellite and reanalysis data. J. Climate, 19, 153–192, doi: 10.1175/JCLI3612.1.CrossRefGoogle Scholar
  48. Schmidt, G., and Coauthors, 2011: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), Geoscientific Model Development, 4, 33–45, doi: 10.5194.gmd-4-33-2011.CrossRefGoogle Scholar
  49. Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293), 1334–1337.CrossRefGoogle Scholar
  50. Servonnat, J., P. Yiou, M. Khodri, D. Swingedouw, and S. Denvil, 2010: Influence of solar variability, CO2 and orbital forcing between 1000 and 1850 AD in the IPSLCM4 model. Climate of the Past, 6(4), 445–460.CrossRefGoogle Scholar
  51. Steig, E. J., D. P. Schneider, S. D. Rutherford, M. E. Mann, J. C. Comiso, and D. T. Shindell, 2009: Warming of the Antarctic ice-sheet surface since the 1957 international geophysical year. Nature, 457(7228), 459–462, doi: 10.1038/nature07669.CrossRefGoogle Scholar
  52. Steinhilber, F., J. Beer, and C. Fröhlich, 2009: Total solar irradiance during the holocene. Geophys. Res. Lett., 36, doi: 10.1029/2009GL040142.Google Scholar
  53. Stott, P. A., S. F. B. Tett, G. S. Jones, M. R. Allen, J. F. B. Mitchell, and G. J. Jenkins, 2000: External control of 20th century temperature by natural and anthropogenic forcings. Science, 290(5499), 2133–2137.CrossRefGoogle Scholar
  54. Swingedouw, D., L. Terray, C. Cassou, A. Voldoire, D. Salas-Mélia, and J. Servonnat, 2011: Natural forcing of climate during the last millennium: Fingerprint of solar variability. Climate Dyn., 36(7), 1349–1364.CrossRefGoogle Scholar
  55. Tapping, K., D. Boteler, P. Charbonneau, A. Crouch, A. Manson, and H. Paquette, 2007: Solar magnetic activity and total irradiance since the Maunder Minimum. Solar Physics, 246(2), 309–326.CrossRefGoogle Scholar
  56. Tett, S. F. B., P. A. Stott, M. R. Allen, W. J. Ingram, and J. F. B. Mitchell, 1999: Causes of twentieth-century temperature change near the Earth’s surface. Nature, 399(6736), 569–572.CrossRefGoogle Scholar
  57. Tett, S. F. B., and Coauthors, 2002: Estimation of natural and anthropogenic contributions to twentieth century temperature change. J. Geophys. Res., 107(D16), doi: 10.1029/2000JD000028.Google Scholar
  58. Verleyen, E., and Coauthors, 2011: Post-glacial regional climate variability along the East Antarctic coastal margin—Evidence from shallow marine and coastal terrestrial records. Earth-Science Reviews, 104(4), 199–212, doi: 10.1016/j.earscirev.2010.10.006.CrossRefGoogle Scholar
  59. Wang, S. W., Z. H. Xie, J. N. Cai, J. H. Zhu, and D. Y. Gong, 2002: Investigation of the global mean temperature changes during the past 1000 years. Progress in Natural Science, 12, 1145–1149. (in Chinese)Google Scholar
  60. Wen, X. Y., T. J. Zhou, S. W. Wang, B. Wang, H. Wan, and J. Li, 2007: Performance of a reconfigured atmospheric general circulation model at low resolution. Adv. Atmos. Sci., 24(4), 712–728, doi: 10.1007/s00376-007-0712-7.CrossRefGoogle Scholar
  61. Xin, X. G., T. W. Wu, J. L. Li, Z. Z. Wang, W. P. Li, and F. H. Wu, 2013: How well dose BCC CSM1.1 reproduce the 20th century climate change over China? Atmos. Oceanic Sci. Lett., 6(1), 21–26.Google Scholar
  62. Yu, R. C., M. H. Zhang, and R. D. Cess, 1999: Analysis of the atmospheric energy budget: A consistency study of available data sets. J. Geophys. Res., 104(D8), 9655–9661.CrossRefGoogle Scholar
  63. Zhang, J., T. Zhou, W. M. Man, and L. Li, 2009: The transient simulation of little ice age by LASG/IAP climate system model FGOALS gl. Quaternary Sciences, 29(6), 1125–1134. (in Chinese)Google Scholar
  64. Zhou, T. J., B. Wu, X. Y. Wen, L. J. Li, and B. Wang, 2008: A fast version of LASG/IAP climate system model and its 1000-year control integration. Adv. Atmos. Sci., 25(4), 655–672, doi: 10.1007/s00376-008-0655-7.CrossRefGoogle Scholar
  65. Zhou, T. J., W. M. Man, and J. Zhang, 2009: Progress in numerical simulations of the climate over the last millennium Advances in Earth Science, 24, 469–476. (in Chinese)Google Scholar
  66. Zhou, T. J., B. Li, W.M. Man, L. X. Zhang, and J. Zhang, 2011: A comparison of the medieval warm period, little ice age and 20th century warming simulated by the FGOALS climate system model. Chinese Science Bulletin, 56, 3028–3041.CrossRefGoogle Scholar
  67. Zebiak, S. E., and M. A. Cane, 1987: A model El Niño-Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jie Zhang (张 洁)
    • 1
    • 2
    • 3
    Email author
  • Laurent Li
    • 2
    • 3
  • Tianjun Zhou (周天军)
    • 1
  • Xiaoge Xin (辛晓歌)
    • 3
  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Laboratoire de Météorologie Dynamique/CNRSUniversité Paris 6ParisFrance
  3. 3.National Climate CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations